Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Тамбовский государственный технический университет» (ФГБОУ ВО «ТГТУ»)

УТВЕРЖДАЮ

Начальник уг	прав	вления	
подготовки	u	аттестации	кадров
высшей квал	ифи	кации	
		Е.И. N	Луратова
« 15 »		февраля	20 23 г.

АННОТАЦИИ К РАБОЧИМ ПРОГРАММАМ ДИСЦИПЛИН

я и сооружения
жений
О.В. Умнова

Аннотация к рабочей программе дисциплины 2.1.1.1 «Методология научных исследований»

Результаты обучения по дисциплине

Обозна- чение	Результаты обучения по дисциплине
P1.	Знать особенности организации научной деятельности при работе в российских и международных исследовательских коллективах и формы представления ее результатов
P2.	Знать особенности планирования профессионального и личностного развития с учетом задач научно-исследовательской деятельности и индивидуально-личностных характеристик
P3.	Знать способы планирования и этапы проведения эксперимента
P4.	Уметь определять основные направления, объекты и методы исследования в области профессиональной деятельности
P5.	Уметь формулировать цели и задачи научного исследования в соответствии с тенденциями и перспективами развития предметной области, уметь формулировать научную новизну результатов исследования

Объем дисциплины составляет 3 зачетных единицы.

Формы промежуточной аттестации

Форма отчетности	Семестр
Зачет	1 семестр

Содержание дисциплины

Тема 1. Основания методологии науки

Общие понятия о науке. Основные этапы развития науки. Классификация наук. Наука как социальный институт. Наука как результат. Общие закономерности развития науки. Структура научного знания. Классификация научного знания. Методология науки. Философско-психологические и системотехнические основания. Науковедческие основания. Этические и эстетические основания. Нормы научной этики. Цель и задачи научного познания. Принципы научного познания. Критерии научности знания. Проблема истины в научном познании.

Тема 2. Средства и методы научного исследования

Средства научного познания: материальные, информационные, математические, логические, языковые. Эволюция средств научного познания в области технических наук. Классификация методов научного исследования. Эмпирический и теоретический уровни познания. Теоретические методы исследования (анализ, синтез, сравнение, абстрагирование, конкретизация, обобщение, формализация, индукция, дедукция, идеализация, аналогия, моделирование). Эмпирические методы исследования (изучение литературы, документов и результатов деятельности, наблюдение, измерение, опрос, метод экспертных оценок, тестирование, обследование, мониторинг, изучение и обобщение опыта, эксперимент, ретроспекция, прогнозирование). Методы исследования в области технических наук.

Тема 3. Этапы проведения научного исследования

Фаза проектирования научного исследования. Концептуальная стадия фазы проектирования: выявление противоречия, формулирование проблемы, определение цели исследования, формирование критериев. Фундаментальные исследования, прикладные исследования, разработки. Этап постановки проблемы. Объект и предмет исследования. Тема исследования. Этап определения цели исследования. Этап выбора критериев оценки достоверности результатов исследования. Стадия построения гипотезы исследования. Стадия конструирования исследования: этапы определения задач исследования, ресурсных возможностей, построения программы исследования, технологической подготовки исследования. Стадия проведения исследования. Стадия оформления результатов исследования. Рефлексивная фаза научных исследований. Особенности проведения научных исследований в области технических наук.

Тема 4. Методология и технология диссертационного исследования

Диссертация и ученая степень. Становление и развитие диссертаций как средства получения ученой степени. Субъекты диссертационного процесса. Паспорт научной специальности. Основные требования к диссертационной работе. Методологический аппарат диссертационного исследования. Формулировка тем диссертаций. Состав и структура диссертационного исследования. Технологические и организационные аспекты подготовки и защиты кандидатской диссертации. Публикация результатов исследования. Виды научных публикаций. Академический стиль и особенности языка диссертации. Основные требования к содержанию и оформлению диссертационной работы. Основные требования к автореферату диссертации.

Аннотация к рабочей программе дисциплины 2.1.1.2 «История и философия науки»

Результаты обучения по дисциплине

Обоз- начение	Результаты обучения по дисциплине
P1.	знание методологии научного познания, в том числе методов критического анализа и оценки современных научных достижений с учетом актуального состояния истории и философии науки
P2.	умение анализировать методологические проблемы, оценивать современные научные достижения и результаты научных исследований, исходя из парадигмы теоретических подходов истории и философии науки
P3.	владение навыками восприятия и анализа текстов на философско-научные темы, письменного аргументированного изложения собственной точки зрения
P4.	знание основных направлений, проблем, теорий и методов истории и философии науки, содержания современных философских дискуссий по проблемам общественного развития
P5.	умение формировать и аргументировано отстаивать собственную позицию по различным проблемам истории и философии науки; использовать положения и категории истории и философии науки для оценивания и анализа различных социальных тенденций, фактов и явлений
P6.	владение навыками решения задач профессионального развития в контексте проблематики методологии научного исследования

Объем дисциплины составляет 3 зачетных единицы.

Формы промежуточной аттестации

Форма отчетности	Семестр
Экзамен	1 семестр

Содержание дисциплины

Раздел 1. Основы истории и философии науки

Три аспекта бытия науки: наука как генерация нового знания, как социальный институт, как особая сфера культуры.

Логико-эпистемологический подход к исследованию науки: позитивистская традиция в философии науки; расширение поля философской проблематики в постпозитивистской философии науки; концепции К. Поппера, И. Лакатоса, Т.Куна, П.Фейерабенда, М.Полани.

Социологический и культурологический подходы к исследованию развитии науки: проблема интернализма и экстернализма в понимании механизмов научной деятельности; концепции М. Вебера, А.Койре, Р. Мертона, М.Малкея.

Традиционалистский и техногенный типы цивилизационного развития и их базисные ценности. Ценность научной рациональности.

Наука и философия.

Наука и искусство.

Роль науки в современном образовании и формировании личности.

Функции науки в жизни общества (наука как мировоззрение, как производительная и социальная сила).

Преднаука и наука в собственном смысле слова.

Культура античного полиса и становление первых форм теоретической науки:

- античная логика и математика.
- развитие логических норм научного мышления и организации науки в средневековых университетах; роль христианской теологии в изменении созерцательной позиции ученого.
 - становление опытной науки в новоевропейской культуре.
 - формирование науки как профессиональной деятельности.
 - становление социальных и гуманитарных наук.

Научное знание как сложная развивающаяся система. Многообразие типов научного знания. Эмпирический и теоретический уровни, критерии их различения.

Структура эмпирического знания.

Структуры теоретического знания.

Основания науки. Структура оснований. Идеалы и нормы исследования и их социокультурная размерность.

Исторические формы научной картины мира. Функции научной картины мира (картина мира как онтология, как форма систематизации знания, как исследовательская программа).

Философские основания науки. Роль философских идей и принципов в обосновании научного знания.

Взаимодействие оснований науки и опыта как начальный этап становления новой дисциплины. Проблема классификации.

Формирование первичных теоретических моделей и законов. Роль аналогий в теоретическом поиске. Процедуры обоснования теоретических знаний. Механизмы развития научных понятий.

Классический и неклассический варианты формирования теории. Генезис образцов решения задач.

Проблемные ситуации в науке. Перерастание частных задач в проблемы. Развитие оснований науки под влиянием новых теорий.

Проблема включения новых теоретических представлений в культуру.

Взаимодействие традиций и возникновение нового знания.

Научные революции как перестройка оснований науки. Проблемы типологии научных революций.

Междисциплинарные взаимодействия и "парадигмальные прививки" как фактор революционных преобразований в науке.

Социокультурные предпосылки глобальных научных революций. Перестройка оснований науки и изменение смыслов мировоззренческих универсалий культуры.

Философия как генерация категориальных структур, необходимых для освоения новых типов системных объектов.

Научные революции как точки бифуркации в развитии знания. Историческая смена типов научной рациональности: классическая, неклассическая, постнеклассическая наука.

Современные процессы дифференциации и интеграции наук. Связь дисциплинарных и проблемно-ориентированных исследований.

Освоение саморазвивающихся "синергетических" систем и новые стратегии научного поиска.

Глобальный эволюционизм как синтез эволюционного и системного подходов.

Сближение идеалов естественнонаучного и социально-гуманитарного познания.

Расширение этоса науки. Новые этические проблемы науки в конце XX столетия. Проблема гуманитарного контроля в науке и высоких технологиях.

Экологическая и социально-гуманитарная экспертиза научно-технических проектов.

Философия русского космизма и учение В.И. Вернадского о биосфере, техносфере и ноосфере. Проблемы экологической этики в современной западной философии (Б. Калликот, О. Леопольд, Р. Аттфильд).

Постнеклассическая наука и изменение мировоззренческих установок техногенной цивилизации. Роль науки в преодолении современных глобальных кризисов.

Историческое развитие институциональных форм научной деятельности.

Научные сообщества и их исторические типы: республика ученых 17 века; научные сообщества эпохи дисциплинарно организованной науки; формирование междисциплинарных сообществ науки XX столетия.

Научные школы.

Историческое развитие способов трансляции научных знаний (от рукописных изданий до современного компьютера). Компьютеризация науки и ее социальные последствия.

Наука и экономика.

Наука и власть. Проблема секретности и закрытости научных исследований. Проблема государственного регулирования науки.

Раздел 2. Философские проблемы технических наук.

Религиозно-мифологическое осмысление практической деятельности в древних культурах. Технические знания как часть мифологии.

Различение «технэ» и «эпистеме» в античности: техника без науки и наука без техники. Появление элементов научных технических знаний в эпоху эллинизма. Начала механики и гидростатики в трудах Архимеда.

Развитие механических знаний в Александрийском мусейоне: работы Паппа и Герона по пневматике, автоматическим устройствам и метательным орудиям.

Техническая мысль античности в труде Марка Витрувия "Десять книг об архитектуре" (I век до н. э.). Первые представления о прочности.

Ремесленные знания и специфика их трансляции. Строительно-архитектурные знания. Горное дело и технические знания.

Влияние арабских источников и техники средневекового Востока.

Христианское мировоззрение и особенности науки и техники в Средние века. Труд как форма служения Богу. Роль средневекового монашества и университетов (XIII в.) в привнесении практической направленности в сферу интеллектуальной деятельности.

Идея сочетания опыта и теории в науке и ремесленной практике: Аверроэс (1121-1158), Томас Брадвардин (1290-1296), Роджер Бэкон (1214-1296) и его труд "О тайных вещах в искусстве и природе".

Персонифицированный синтез научных и технических знаний: художники и инженеры, архитекторы и фортификаторы, ученые-универсалы эпохи Возрождения.

Расширение представлений гидравлики и механики в связи с развитием мануфактурного производства и строительством гидросооружений.

Великие географические открытия и развитие прикладных знаний в области навигации и кораблестроения. В. Гильберт: "О магните, магнитных телах и великом магните Земле" (1600).

Программа воссоединения "наук и искусств" Фрэнсиса Бэкона (1561-1626).

Технические проблемы и их роль в становлении экспериментального естествознания в XVII в.

Организационное оформление науки Нового времени. Университеты и академии как сообщества ученых-экспериментаторов.

Промышленная революция конца XVIII – середины XIX вв.

Возникновение в конце XVIII в. технологии как дисциплины, систематизирующей знания о производственных процессах.

Становление технического и инженерного образования. Учреждение средних технических школ в России.

Высшие технические школы как центры формирования технических наук. Разработка прикладных направлений в механике. Создание научных основ теплотехники. Зарождение электротехники.

Становление аналитических основ технических наук механического цикла.

Создание гидродинамики идеальной жидкости и изучение проблемы сопротивления трения в жидкости: И. Ньютон, А. Шези, О. Кулон и др.

Создание научных основ теплотехники. в XVIII в. Вклад российских ученых М.В.Ломоносова и Г.В.Рихмана в развитии учения о теплоте.

Формирование системы международной и отечественной научной коммуникации в инженерной сфере.

Формирование классических технических наук: технические науки механического цикла, система теплотехнических дисциплин, система электротехнических дисциплин. Изобретение радио и создание теоретических основ радиотехники.

Разработка научных основ космонавтики.

А.Н.Крылов (1863-1945) - основатель школы отечественного кораблестроения. Опытовый бассейн в г. Санкт-Петербурге как исследовательская морская лаборатория.

Развитие научных основ теплотехники. Термодинамические циклы. Становление теории тепловых электростанций (ТЭС) как комплексной расчетно-прикладной дисциплины.

Развитие теории механизмов и машин.

Становление технических наук электротехнического цикла.

Создание научных основ радиотехники. Возникновение радиоэлектроники.

Математизация технических наук. Физическое и математическое моделирование.

Развитие прикладной ядерной физики и реализация советского атомного проекта, становление атомной энергетики и атомной промышленности.

Развитие полупроводниковой техники, микроэлектроники и средств обработки информации. Зарождение квантовой электроники.

Научное обеспечение пилотируемых космических полетов (1960–1970 гг.). Вклад в решение научно-технических проблем освоения космического пространства С. П. Королева, М. В. Келдыша, Микулина, В. П. Глушко, В. П. Мишина, Б. В. Раушенбаха и лр.

От теории автоматического регулирования к теории автоматического управления и кибернетике (H. Винер).

Компьютеризация инженерной деятельности. Развитие информационных технологий и автоматизация проектирования.

Создание интерактивных графических систем проектирования (И. Сазерленд, 1963). Первые программы анализа электронных схем и проектирования печатных плат, созданные в США и СССР (1962–1965).

Исследование и проектирование сложных "человеко-машинных" систем: системный анализ и системотехника, эргономика и инженерная психология, техническая эстетика и лизайн.

Экологизация техники и технических наук. Проблема оценки воздействия техники на окружающую среду. Инженерная экология.

Предыстория возникновения информационного общества.

Информационные революции в истории человечества

Основные черты информационного общества, проблемы его становления и развития.

Аннотация к рабочей программе дисциплины 2.1.1.3 «Иностранный язык»

Результаты обучения по дисциплине

Обоз- начение	Результаты обучения по дисциплине
P1.	знать иноязычную общенаучную и терминологическую лексику, грамматические структуры, научные жанры и их композиционно-смысловое структурирование, способы научного изложения, основные приемы аннотирования, реферирования
P2.	уметь читать, понимать, переводить и использовать в своей научной работе оригинальную иноязычную научную литературу по специальности; понимать иноязычную устную речь на научные темы; писать доклад, тезисы, статью, аннотацию по теме исследования
Р3.	владеть иноязычной общенаучной и терминологической лексикой; всеми видами чтения; навыками перевода текста по специальности; основами публичного выступления; основными навыками письма, необходимыми для подготовки публикаций; навыками работы со справочными материалами

Объем дисциплины составляет 6 зачетных единиц.

Формы промежуточной аттестации

Форма отчетности	Семестр
Экзамен	2 семестр

Содержание дисциплины

Раздел 1. Научное исследование

Определение, типы и свойства научного исследования. Основные требования, предъявляемые к научному исследованию. Формы и методы научного исследования. Моделирование особого сценария научно-познавательной деятельности ученого: проблемная ситуация \rightarrow проблема \rightarrow идея \rightarrow гипотеза \rightarrow доказательство гипотезы \rightarrow закон, вывод. Этапы научно-исследовательской деятельности ученого. Правильная организация научно-исследовательской работы. Этапы научно-исследовательской работы. Определение объекта и предмета научного исследования. Постановка проблемы. Цели и задачи исследования.

Раздел 2. Научная конференция

Участие в международной научной конференции. Информационное письмо. Заполнение регистрационного бланка участника конференции. Прибытие и регистрация на конференции. Открытие конференции. Пленарная сессия. Лексико-грамматические особенности устного научного дискурса. Коммуникативные навыки. Участие в дискуссии. Выявление лексико-грамматических особенностей данного жанра устного научного дискурса. Стендовый доклад. Посещение научно-исследовательского центра. Лексико-грамматический минимум по теме. Коммуникативные навыки. Закрытие конференции.

Раздел 3. Написание статьи

Научно-экспериментальная статья по теме исследования. Риторическая организация научно-экспериментальной статьи по теме исследования. Лексико-грамматические особенности научно-экспериментальной статьи по теме исследования. Заголовок и ключевые сло-

ва научно-экспериментальной статьи по теме исследования. Введение к статье. Композиционный и риторический формат и лексико-грамматические особенности. Написание раздела «Методы» научно-экспериментальной статьи по теме исследования. Выявление и закрепление лексико-грамматических особенностей данного раздела статьи. Проведение эксперимента. Сбор и анализ экспериментальных данных. Написание раздела «Материалы» научно-экспериментальной статьи по теме исследования. Выявление и закрепление лексико-грамматических особенностей данного раздела статьи. Раздел «Библиография». Выявление и закрепление лексико-грамматических особенностей данного раздела статьи, правила оформления библиографии. Написание аннотации к научно-экспериментальной статье по теме исследования.

Аннотация к рабочей программе дисциплины 2.1.1.4 «Строительные конструкции, здания и сооружения»

Результаты обучения по дисциплине

Обоз- начение	Результаты обучения по дисциплине
P1.	знает современные теории, аналитические и вычислительные методы расчета и проектирования строительных конструкций
P2.	знает теории и методы оценки напряженного состояния, живучести, риска, надежности, остаточного ресурса и сроков службы строительных конструкций, зданий и сооружений при воздействиях различной природы
Р3.	знает современные направления в области совершенствования конструктивных и объемно-планировочных решений зданий, развития теорий и методов расчета строительных конструкций
P4.	умеет обоснованно подбирать конструктивные и объемно-планировочные решения, а также технические решения по реконструкции, усилению и восстановлению строительных конструкций, зданий и сооружений
P5.	владеет физическими и численными методами экспериментальных исследований несущих и ограждающих конструкций и конструктивных свойств строительных материалов
P6.	владеет методами расчета и проектирования строительных конструкций зданий и сооружений при воздействиях различной природы

Объем дисциплины составляет 4 зачетные единицы.

Формы промежуточной аттестации

Форма отчетности	Семестр
Зачет с оценкой	3 семестр
Экзамен	4 семестр

Содержание дисциплины

Раздел 1. Введение

Тема 1.1 Общие сведения о зданиях, сооружениях и строительных конструкциях. Современное состояние строительных конструкций.

Типы зданий. Основные конструктивные элементы зданий. Назначение размеров зданий и их элементов. Типизация, унификация. Принципы архитектурно-композиционных решений зданий. Конструктивные системы, конструктивные схемы и строительные системы зданий. Область их применения, выбор при проектировании. Технико-экономическая оценка проектных решений зданий.

Tема 1.2. Основные положения проектирования и расчета строительных конструкций.

Особенности проектирования и расчета строительных конструкций. Развитие методов расчёта строительных конструкций. Нагрузки. Классификация их. Требования, предъявляемые к несущим конструкциям.

Раздел 2. Механические свойства конструкционных материалов.

Виды и влияние внешних воздействий на здания и сооружения. Физикомеханические свойства конструкционных материалов. Математические модели материа-

лов, материальные функции, параметры моделей. Роль эксперимента в исследовании свойств строительных материалов. Базовые (критериальные) механические свойства материалов — прочность, пластичность, твердость, ударная вязкость и выносливость. Экспериментальные методы исследования механических свойств материалов.

Раздел 3. Железобетонные конструкции.

Тема 3.1. Сущность железобетона

Совместная работа бетона и стали. Преимущества и недостатки железобетонных конструкций. Структура бетона. Теория прочности бетона. Предельные состояния. Основы расчета по предельным состояниям. Виды и свойства арматурной стали. Классы арматуры. Виды арматуры. Виды и свойства бетона. Классы и марки бетона.

Тема 3.2. Методы расчета железобетонных конструкций.

Российские нормы и правила расчета железобетонных конструкций. Интегрирование российских норм в европейскую нормативную систему Еврокод. Три стадии напряженно-деформированного состояния нормальных сечений и характер их разрушения при изгибе, внецентренном сжатии и внецентренном растяжении. Аналитические и численные методы статического расчета и оценки напряженно-деформированного состояния.

Тема 3.3. Фундаменты.

Фундаменты с плоской подошвой — ленточные, столбчатые, плитные. Пространственные конструкции фундаментов. Расчет прочности фундаментов. Расчет на продавливание. Подпорные стены и особенности их расчета. Пространственные конструкции подпорных стен. Свайные фундаменты. Виды свайных фундаментов: забивные, сваиоболочки, набивные, винтовые, буровые. Принципы проектирования элементов свай, ростверков и других элементов свайных фундаментов.

Тема 3.4. Экспериментальные исследования механических свойств бетона и железобетона.

Значение экспериментальных исследований в развитии теории сопротивления железобетона. Основные положения механики хрупкого разрушения бетона. Механика упругопластического разрушения бетона. Результаты экспериментально-теоретических исследований вязкости разрушения бетона.

Тема 3.5. Проблемы старения бетона.

Оценка и учет изменений физико-механических характеристик старого бетона при длительной эксплуатации в зданиях и сооружениях. Изменение физико-механических свойств бетона при длительной эксплуатации. Определение характеристик трещиностой-кости (вязкости разрушения) бетона различного возраста при статическом и динамическом нагружении.

Тема 3.6. Коррозия бетона и железобетона.

Стойкость бетона в агрессивных средах. Расчет поврежденных коррозией железобетонных конструкций по образованию и раскрытию трещин. Учет влияния глубины коррозионных повреждений бетона на его прочностные характеристики в эксплуатируемых железобетонных конструкциях.

Тема 3.7. Большепролетные железобетонные конструкции и конструкции высотных зданий.

Сведения о каркасных и бескаркасных зданиях. Связевая, рамно-связевая и рамная системы зданий. Монолитные и сборные ребристые перекрытия и их основные виды — балочные и безбалочные. Перераспределение усилий. Пластический шарнир. Ограничение метода. Область применения пространственных большепролетных конструкций. Виды, классификация, принципы формообразования большепролетных конструкций.

Раздел 4. Металлические конструкции.

Тема 4.1. Исторический обзор развития металлических конструкций. Основы расчета металлических конструкций по методу предельных состояний. Основы проектирования и расчета металлических конструкций.

Общая характеристика: область и объем применения, народнохозяйственное значение, современные конструктивные формы, основные свойства и технические возможности металлических конструкций, достоинства и недостатки. Свойства и работа строительных сталей и алюминиевых сплавов. Сортамент металлических профилей. Основные положения проектирования и расчета металлических конструкциях по методу предельных состояний.

Тема 4.2. Соединения металлических конструкций. Элементы металлических конструкций. Балки, балочные конструкции. Центрально-сжатые колонны.

Конструирование и расчет сварных соединений с угловыми и стыковыми швами. Конструирование и расчет болтовых соединений. Основы конструирования и расчета деталей, стыков и сопряжений балок. Подбор и проверка сечения центрально-сжатой сплошной и сквозной колонн. Основы конструирования и расчета оголовка и базы центрально-сжатой колонны.

Тема 4.3. Элементы металлических конструкций. Фермы. Особенности конструирования и расчета. Основы проектирования каркасов одноэтажных бескрановых зданий. Особенности работы и расчета каркаса.

Расчет и конструирование стропильных ферм. Подбор и проверка сечений растянутых и сжатых стержней ферм, скомпонованных из парных уголков, тавров и замкнутых гнуто-сварных профилей. Основы конструирование узлов. Определения нагрузок, действующих на поперечную раму каркаса. Статический расчет поперечной рамы. Составление основных сочетаний нагрузок и усилий. Конструирование узлов внецентренно-сжатой сплошной и сквозной колонн.

Раздел 5. Конструкции из дерева и пластмасс

Тема 5.1. Древесина и пластмассы как конструкционные материалы. Элементы конструкций цельного сечения.

Запасы древесины. Строение древесины. Сортамент, пороки и качество древесины. Свойства древесины. Достоинства и недостатки древесины. Основы расчета по предельным состояниям. Расчет растянутых элементов. Расчет сжатых элементов. Расчет изгибаемых элементов. Косой изгиб. Расчет растянуто-изгибаемых элементов. Расчет сжато-изгибаемых элементов.

Тема 5.2. Соединение элементов конструкций. Сплошные плоскостные конструкции.

Типы соединений. Соединения без специальных связей. Соединения со стальными связями. Клеевые соединения. Дощатые и клеефанерные настилы покрытий. Применение настилов. Сплошной настил. Дощатые настилы перекрытий, подшивки и обшивки стен. Клеефанерные настилы. Расчет клеефанерных панелей. Балки и прогоны цельного сечения. Составные балки на податливых связях. Балки и прогоны покрытий. Спаренные многопролетные прогоны. Консольно-балочные прогоны. Балки перекрытия.

Тема 5.3. Плоские сквозные деревянные конструкции. Пространственное крепление плоских деревянных конструкций в покрытиях. Изготовление деревянных и пластмассовых конструкций. Пространственные конструкции в покрытиях.

Плоские сквозные конструкции. Фермы. Классификация сквозных конструкций. Классификация ферм. Статический расчет фермы. Подбор сечений элементов фермы. Расчет и конструирование узлов фермы. Пространственные деревянные конструкции. Классификация пространственных деревянных конструкций. Область применения. Распорные своды. Расчет сетчатого свода. Своды-оболочки и складки. Купола. Расчет куполовоболочек. Основные виды конструкционных пластмасс. Область применения. Основные

сведения. Тепло- и звукоизоляционные материалы. Древесные пластики. Несущие конструкции из пластмасс. Пневматические конструкции. Решетчатые конструкции из пластмасс. Пространственные конструкции из пластмасс. Пневматические конструкции.

Раздел 6. Уникальные здания и сооружения.

Мировая история развития высотного домостроения (США, Западная Европа, Россия, Азия, Австралия, Ближний Восток). Опыт строительства уникальных сооружений: небоскребов, крытых большепролетных спортивных и общественных зданий, большепролетных мостов, туннелей, телебашен. Перспективные материалы, передовые технологии возведения, уникальные конструкции.

Раздел 7. Высотные здания и сооружения.

Определение понятия «высотное здание». Особенности проектирования высотных зданий. Особенности несущей системы высотных зданий. Сложности эксплуатации и технологии их возведения. Особенности объемно-планировочных решений. Особенности решения лестнично-лифтовых узлов. Пожарная безопасность, параметры микроклимата.

Раздел 8. Большепролетные конструкции зданий и сооружений.

История развития большепролетных конструкций. Материалы для большепролетных конструкций. Нормы проектирования большепролетных конструкций. Сравнение российских норм и Еврокодов.

Раздел 9. Тонкостенные пространственные конструкции покрытий и перекрытий.

Разновидности тонкостенных пространственных покрытий. Понятие об оболочках и складках, образующих тонкостенные системы покрытий. Конструктивные решения железобетонных оболочек и контурных конструкций. Схема напряженного состояния и особенности расчета длинных и средних цилиндрических оболочек.

Раздел 10. Купольные конструкции покрытий.

Анализ напряженного состояния стенки купола. Условия безмоментного напряженного состояния. Определение усилий в куполе по безмоментной теории. Конструирование куполов. Опорные конструкции. Особенности возведения монолитных и сборных куполов.

Раздел 11. Безопасность высотных и большепролетных конструкций

Возможные причины разрушения высотных и большепролетных зданий. Рекомендации по обеспечению безопасности высотных и большепролетных зданий и сооружений от лавинообразного (прогрессирующего) обрушения. Особенности обеспечения пожарной безопасности.

Аннотация к рабочей программе дисциплины 2.1.2.1 «Научные исследования в совершенствовании строительных конструкций»

Результаты обучения по дисциплине

Обоз- начение	Результаты обучения по дисциплине
P1.	знает современные направления в области совершенствования строительных конструкций, узловых решений и методов их расчета
P2.	владеет методами расчета и проектирования строительных конструкций зданий и сооружений, включая моделирование в программных комплексах

Объем дисциплины составляет 2 зачетные единицы.

Формы промежуточной аттестации

Форма отчетности	Семестр
Экзамен	5 семестр

Содержание дисциплины

Раздел 1. Научные направления в области совершенствования металлических конструкций

Современные теории и методы формообразования металлических конструкций для снижения материалоемкости и повышения эффективности их работы. Новые марки стали и алюминиевых сплавов, эффективные профили проката. Новые способы соединения элементов стальных конструкций. Новые типы легких стержневых и листовых конструкций для зданий различного функционального назначения. Новые методы усиления стальных конструкций. Уточнение нормативной базы проектирования стальных конструкций.

Раздел 2. Научные направления в области совершенствования железобетонных и каменных конструкций

Разработка конструктивных решений по снижению массы, включая применение высокопрочных и ультра высокопрочных бетонов, арматуры высоких классов, модифицированных бетонов. Разработка и уточнение существующих методов расчета конструкций, включая пространственные, тонкостенные и с предварительным напряжением. Развитие автоматизированных и численных методов расчета железобетонных и каменных конструкций. Повышение качества и упрочнение стыков сборных и сборно-монолитных конструкций. Повышение трещиностойкости конструкций путем оптимизации физикохимических и механических процессов взаимодействия арматуры и бетона. Уточнение нормативной базы проектирования железобетонных и каменных конструкций.

Раздел 3. Научные направления в области совершенствования конструкций из дерева и пластмасс

Исследования в области повышения надежности проектных решений конструкций из древесины и пластмасс. Разработка современных композиционных материалов на основе древесины и пластмасс, новых строительных конструкций на их основе. Оценка действительной работы деревянных конструкций в эксплуатационных условиях. Исследование деформативности узлов деревянных конструкций. Разработка и уточнение существующих методов расчета конструкций из дерева и пластмасс. Уточнение нормативной базы проектирования деревянных конструкций. Разработка новых конструктивных решений зданий.

Аннотация к рабочей программе дисциплины 2.1.2.2 «Актуальные проблемы обеспечения комфортного микроклимата»

Результаты обучения по дисциплине

Обоз- начение	Результаты обучения по дисциплине	
P1.	знает требования, предъявляемые к микроклиматическим параметрам зданий	
P2.	знает методы расчета и проектирования тепловой защиты зданий	
P3.	знает технические решения ограждающих конструкций зданий и сооружений	
P4.	умеет обоснованно выбирать техническое решение ограждающих конструкций, обеспечивающее комфортный микроклимат в зданиях	
P5.	владеет методами расчета и проектирования тепловой защиты зданий, включая защиту ограждающих конструкций от увлажнения	
P6.	владеет методами расчета и проектирования защиты от шума	

Объем дисциплины составляет 2 зачетные единицы.

Формы промежуточной аттестации

Форма отчетности	Семестр
Экзамен	5 семестр

Содержание дисциплины

Раздел 1. Факторы и условия внешней и внутренней сред, влияющие на эксплуатационные качества ограждающих конструкций зданий

Основные климатические характеристики местности, влияющие на эксплуатационные качества ограждений. Принципы анализа климатических условий с позиций их влияния на конструктивные решения и эксплуатационные качества ограждающих элементов зданий. Параметры микроклимата и принципы их гигиенического нормирования. Зависимость микроклимата помещений от характеристик ограждений. Взаимосвязь и взаимовлияние параметров микроклимата помещений и тепло-влажностного состояния ограждений здания. Влажностный режим помещений и его влияние на условия эксплуатации ограждений.

Раздел 2. Физико-технические основы эксплуатации внутренних ограждений зданий.

Тема 2.1 Обеспечение теплоусвоения полов при эксплуатации зданий.

Теплоусвоение полов, его нормирование и принципы проектирования «теплых» полов гражданских зданий. Принципы оценки теплотехнических качеств полов. Обеспечение и сохранение теплотехнических качеств полов при эксплуатации зданий.

Тема 2.2 Шумовой режим в помещениях гражданских зданий и обеспечение изоляции шума ограждениями.

Шумовой режим помещений и его нормирование. Виды шумов в зданиях и их распространение внутри зданий. Воздушный шум и принципы его изоляции ограждениями. Индекс изоляции воздушного шума ограждениями. Его нормирование и расчеты для ограждений различных конструктивных решений. Ударный шум и принципы его изоляции ограждениями. Индекс приведенного ударного шума под перекрытиями. Его нормирование и расчеты для перекрытий с различными конструктивными решениями полов.

Принципы оценки звукоизолирующих качеств ограждений при эксплуатации зданий. Ограничение распространения структурного шума. Принципы повышения изоляции воздушного и ударного шумов ограждениями на стадии эксплуатации зданий.

Раздел 3. Физико-технические основы эксплуатации наружных ограждений зданий.

Тема 3.1 Теплозащита зданий. Принципы эксплуатации теплозащитных ограж- дающих элементов.

Виды теплопередачи в среде помещений и в ограждающих конструкциях зданий. Нормативные требования, предъявляемые по теплозащите к ограждениям зданий. Принципы оценки теплозащитных качеств ограждающих конструкций при эксплуатации зданий. Меры по обеспечению теплозащитных качеств ограждений при эксплуатации зданий.

Тема 3.2 Влажностный режим помещений и элементов оболочки здания

Влажностный режим помещений. Влажность воздуха и ее влияние на влажностное состояние ограждений и их теплозащитных качества. Условия эксплуатации ограждений исходя из влажностного режима помещений и зоны влажности района строительства.

Виды влаги в элементах оболочки и причины, определяющие их появление. Строительная, атмосферная, капиллярная, сорбционная виды влаги и их влияние на эксплуатационные свойства элементов оболочки. Капиллярное и сорбционное увлажнение ограждений и меры по их ограничению при эксплуатации.

Аннотация к рабочей программе дисциплины 2.1.3.1 (Ф) «Основы педагогической деятельности в вузе»

Результаты обучения по дисциплине

Обозна- чение	Результаты обучения по дисциплине	
P1.	знает современные педагогические теории и технологии	
P2.	знает методику профессионального обучения и педагогические технологии	
Р3.	умеет обоснованно выбирать и эффективно использовать образовательные технологии, методы и средства обучения и воспитания с целью обеспечения планируемого уровня личностного и профессионального развития обучающегося	
P4.	владеет фундаментальными знаниями в области образования и педагогических наук в объеме, достаточном для решения научно-исследовательских задач	
P5.	владеет методами и методиками научно-исследовательской деятельности в области образования и педагогических наук	

Объем дисциплины составляет 2 зачетные единицы.

Формы промежуточной аттестации

Форма отчетности	Семестр
Зачет	3 семестр

Содержание дисциплины

Тема 1. Теория педагогической деятельности. Основные понятия и категории педагогики. Сущность, структура и виды педагогической деятельности. Научные и практические задачи педагогической деятельности. Педагогический профессионализм. Педагогическое мастерство преподавателя. Ценностные характеристики педагогической деятельности. Теория и практика обучения. Цели обучения — системообразующий компонент учебного процесса. Закономерности усвоения знаний и способов деятельности.

Тема 2. Профессиональная деятельность и личность педагога. Общая характеристика педагогической профессии. Возникновение и развитие педагогической профессии. Социальная значимость педагогической деятельности в современном обществе. Социально и профессионально обусловленные функции педагога. Профессионально обусловленные требования к личности педагога. Общая и профессиональная культура педагога. Профессионально-педагогическая направленность личности педагога, познавательная и коммуникативная активность педагога. Профессионально значимые личностные качества педагога, психологические основы их формирования. Педагогическое мастерство, основные психолого-педагогические предпосылки и условия его формирования. Саморазвитие педагога.

Тема 3. Комплексная обучающая деятельность (организаторская, коммуникативно-мотивирующая и информационная). Современные педагогические технологии. Формы, методы и средства обучения. Принципы моделирования учебных занятий. Конструирование интерактивного/ мультимедийного учебного занятия. Выбор методов и средств обучения, обеспечивающих достижение целей занятия.

Тема 4. Оценочно-корректировочная деятельность педагога. Оценка как элемент управления качеством образования. Связь оценки и самооценки. Традиционные и современные средства оценки. Конструирование учебного занятия: разработка диагностических материалов для оценки достигнутых результатов обучения.

Аннотация к рабочей программе дисциплины 2.1.3.2 (Ф) «Организация и проведение научных исследований и разработок»

Результаты обучения по дисциплине

Обозна- чение	Результаты обучения по дисциплине
P1.	знать основные положения государственной научно-технической политики РФ и законодательные акты в сфере научной деятельности.
P2.	знать приоритетные направления развития науки, технологий и техники РФ, национальные и федеральные проекты, направленные на научно-технологическое и инновационное развитие страны
P3.	знать особенности организации и проведения научных исследований и разработок в РФ и за рубежом
P4.	уметь использовать нормативно-техническую документацию, регламентирующую порядок выполнения НИОКР
P5.	владеть терминологией в сфере организации научных исследований и разработок и коммерциализации результатов НИОКР
P6.	владеть основами планирования и управления жизненным циклом выполнения научных исследований и разработок по группе научных специальностей «2.1. Строительство и архитектура»

Объем дисциплины составляет 2 зачетные единицы.

Формы промежуточной аттестации

Форма отчетности	Семестр
Зачет	5 семестр

Содержание дисциплины

Тема 1. НИОКР в законодательной и нормативно-технической документации Российской Федерации.

Иерархия и основные положения законодательных актов РФ в сфере научной деятельности. Основные положения государственной научно-технической политики РФ. Терминология в сфере организации научных исследований и разработок. Законодательное регулирование взаимоотношений в научной и научно-технической деятельности. Права на результаты научно-технической деятельности. Коммерциализация результатов интеллектуальной деятельности.

Цели стандартизация и виды стандартов. Взаимосвязь государственных и международных стандартов. Нормативно-техническая документация, определяющая требования при выполнении НИОКР. Развитие направлений стандартизации, определяющих порядок выполнения НИОКР.

Тема 2. Организация научных исследований и разработок в Российской Федерации и за рубежом.

Приоритетные направления развития науки, технологий и техники РФ. Перечень критических технологий. Организационная структура в сфере реализации научнотехнической политики. Национальный проект «Наука и университеты». Развитие интеграционных процессов в сфере науки, высшего образования и индустрии. Развитие масштабных научных и научно-технологических проектов по приоритетным исследовательским направлениям. Развитие инфраструктуры для подготовки исследовательских кадров.

Развитие человеческого капитала в интересах регионов, отраслей и сектора исследований и разработок.

Российская академия наук и ее роль в реализации государственной научнотехнической политики в сфере фундаментальных исследований. Министерство науки и высшего образования РФ и его роль в реализации программ прикладных и фундаментальных исследований. Роль государственных корпораций в инновационном развитии российской промышленности.

Технологические платформы, кластеры, технопарки как инструмент активации, концентрации и интеграции научно-инновационной деятельности. Научные фонды и их роль в поддержке фундаментальных и поисковых научных исследований. Зарубежный опыт организации научных исследований и разработок. Особенности и принципы организации научных исследований и разработок в ведущих странах мира.

Краткая характеристика современного состояния, направлений развития и форм организации сферы исследований и разработок в регионе и ФГБОУ ВО «ТГТУ». Научно-исследовательская политика университета и политика в области инноваций и коммерциализации разработок. Научные школы университета. Инфраструктура научно-технической и инновационной деятельности. Результативность научных исследований и разработок ФГБОУ ВО «ТГТУ».

Тема 3. Планирование и управление жизненным циклом выполнения НИОКР.

Жизненный цикл продукции в нормативно-технической документации. Стадии жизненного цикла. Управление жизненным циклом. Организация выполнения НИОКР. Планирование НИОКР. Основы сетевого планирования. Оценка стоимости НИОКР и планирование бюджета Проведение исследования и его результаты. Оформление результатов исследования. Защита приоритета и новизны полученных результатов. Оценка эффективности и результативности НИОКР. Организация работы в научном коллективе и нормы научной этики. Особенности проведения научных исследований и разработок по строительству и архитектуре.

Аннотация к рабочей программе дисциплины 2.1.3.3(Ф) «Технология представления результатов исследования»

Результаты обучения по дисциплине

Обозна- чение	Результаты обучения по дисциплине
P1.	знание требований, предъявляемых к результатам диссертационного исследования в соответствии с установленными положениями
P2.	знание регламента представления результатов научных исследований в форме диссертации
P3.	знание процедуры защиты диссертации
P4.	умение использовать современные методы и технологии научной коммуникации для систематизации результатов научных исследований
P5.	владение способами критического анализа для подготовки к представлению результатов научных исследований
P6.	владение способами изложения научных данных и выводов и навыками презентации результатов диссертационного исследования
P7.	владение стратегиями дискуссионного общения по материалам научных исследований

Объем дисциплины составляет 2 зачетные единицы.

Формы промежуточной аттестации

Форма отчетности	Семестр
Зачет	5 семестр

Содержание дисциплины

Тема 1. Подготовка к представлению научно-квалификационной работы на рассмотрение диссертационного совета

Состав и структура диссертации. Критерии, которым должны отвечать диссертации на соискание ученых степеней. Требования к публикации основных научных результатов диссертации в рецензируемых научных изданиях. Нормы научной этики и соблюдения авторских прав. Система Антиплагиат. Критерии выбора диссертационного совета. Регламент преставления работ в диссертационные советы. Основные требования к автореферату диссертации.

Тема 2. Принятие диссертации к рассмотрению и защите

Положение о порядке присуждения ученых степеней. Положение о совете по защите диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук. Регламент предварительной экспертизы, принятия диссертационных работ и их защиты в диссертационных советах ФГБОУ ВО «ТГТУ». Принятие диссертации к рассмотрению. Единая государственная информационная система мониторинга процессов аттестации научных и научно-педагогических кадров высшей квалификации (ЕГИСМ). Экспертная комиссия. Назначение оппонентов и ведущей организации. Принятие диссертации к защите. Объявление о защите на сайте ВАК. Рассылка авторефератов. Регламент представления документов. Работа с отзывами на диссертацию оппонентов и ведущей организации. Работа с отзывами на автореферат.

Тема 3. Защита диссертации и формирование аттестационного дела

Процедура защиты диссертации. Выступление соискателя на защите. Презентация результатов исследования. Ответы на вопросы членов диссертационного совета. Ответы на замечания оппонентов и замечания в отзывах. Заключение совета по результатам защи-

ты. Документы для отправки аттестационного дела в ВАК. Стенограмма. Положение о представлении экземпляра диссертации. Информационная карта диссертации.

Тема 4. Утверждение диссертации в ВАК

Регламент представления документов аттестационного дела в ВАК. Экспертные советы. Снятие диссертации с рассмотрения. Повторная защита. Подача апелляции. Приказ о выдаче диплома кандидата наук. Готовность и получение диплома кандидата наук.