А. А. БАЛАШОВ

ОСНОВНЫЕ ПОНЯТИЯ ПРЕОБРАЗОВАНИЯ ЛАПЛАСА

Тамбов Издательский центр ФГБОУ ВО «ТГТУ» 2025

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Тамбовский государственный технический университет»

А. А. БАЛАШОВ

ОСНОВНЫЕ ПОНЯТИЯ ПРЕОБРАЗОВАНИЯ ЛАПЛАСА

Утверждено Ученым советом университета в качестве учебного пособия для студентов, обучающихся по направлению 13.04.01 «Теплоэнергетика и теплотехника», очной и заочной форм обучения

Учебное электронное издание

Тамбов Издательский центр ФГБОУ ВО «ТГТУ» 2025

УДК 517.958(075.8) ББК 3312я73 Б20

Репензенты:

Доктор физико-математических наук, профессор, профессор кафедры теоретической и экспериментальной физики ФГБОУ ВО «ТГУ им. Г. Р. Державина»

В. А. Федоров

Кандидат технических наук, доцент кафедры «Механика и инженерная графика» ФГБОУ ВО «ТГТУ» П. А. Галкин

Балашов, А. А.

Б20 Основные понятия преобразования Лапласа [Электронный ресурс] : учебное пособие / А. А. Балашов. — Тамбов : Издательский центр ФГБОУ ВО «ТГТУ». — 2025. — 1 электрон. опт. диск (CD-ROM). — Системные требования : ПК не ниже класса Pentium IV; RAM 512 Mb; необходимое место на HDD 2,0 Mb; Windows 7/8/10/11; дисковод CD-ROM, мышь. — Загл. с экрана. ISBN 978-5-8265-2905-8

Содержит теоретический материал и примеры решения задач по операционному исчислению — разделу дисциплины «Уравнения математической физики в теплопроводности и термоупругости». Также включены контрольные вопросы к курсу и список рекомендуемой литературы.

Предназначено для студентов, обучающихся по направлению 13.04.01 «Теплоэнергетика и теплотехника», очной и заочной форм обучения.

УДК 517.958(075.8) ББК 3312я73

Все права на размножение и распространение в любой форме остаются за разработчиком. Нелегальное копирование и использование данного продукта запрещено.

ISBN 978-5-8265-2905-8 © Федеральное государственное бюджетное образовательное учреждение высшего образования «Тамбовский государственный технический университет» (ФГБОУ ВО «ТГТУ»), 2025

ВВЕДЕНИЕ

Настоящее учебное пособие составлено в соответствии с Федеральным государственным образовательным стандартом по дисциплине «Уравнения математической физики в теплопроводности и термоупругости» и предназначено в качестве дополнительного материала к основной учебной литературе для студентов различных направлений вузов.

Учебное пособие содержит теоретический материал и примеры решения задач по операционному исчислению. Каждый раздел начинается с небольшой теоретической части, в которой приведены основные расчетные формулы и определения, необходимые для решения задач по данному разделу. В конце каждого раздела рассмотрены примеры решения задач с подробным описанием методики вычислений и привлечением необходимого справочного материала, который приведен в приложении.

1. ОБЩИЕ ПОНЯТИЯ

При решении уравнений теплопроводности классическими методами для некоторых задач (задачи с переменными граничными условиями, с системой неоднородных тел и т.д.) встречаются большие трудности. Решения часто получаются в виде интегралов или рядов, которые мало пригодны для практического использования. В последнее время в теплофизике с большим успехом применяются операционные методы, которые позволяют получать не только точное решение, но и ряд приближенных решений с заданной степенью точности. Операционными методами можно с таким же успехом решать задачи, в которых искомая функция терпит разрыв непрерывности [1].

Операционные методы решения некоторых задач применялись очень давно в качестве подсобного математического аппарата, призванного облегчить получение уже известных результатов. Дальнейшее развитие этих методов показало, что они являются самостоятельными математическими методами, обладающими известными преимуществами перед классическими при применении их к решению дифференциальных уравнений в частных производных.

Операционное исчисление как самостоятельный метод было впервые создано профессором М. Ващенко-Захарченко. В монографии «Символическое исчисление и его приложение к интегрированию линейных дифференциальных уравнений» 1862 года автор дает систематическое изложение операционного исчисления и выводит основные соотношения и их применения к решению дифференциальных уравнений с постоянными и переменными коэффициентами [1].

Применение операционного исчисления значительно облегчает и ускоряет получение нужных результатов. Для примера можно рассмотреть решение дифференциального уравнения

$$\frac{dx}{dt} + 2x = 4\tag{1.1}$$

при начальном условии x(0) = 0.

В операционном исчислении, вводя символ p, позволяющий заменить дифференцирование умножением, из уравнения (1.1) получаем

$$px + 2x = 4,$$

откуда

$$x(p+2) = 4,$$

$$x = \frac{4}{(p+2)},$$

$$x = \frac{4}{(p+2)} = \frac{4}{p} \cdot \frac{1}{1+\frac{2}{p}} = \frac{4}{p} \cdot \left[1 + \frac{2}{p} + \left(\frac{2}{p}\right)^2 + \dots + (-1)^n \left(\frac{2}{p}\right)^n + \dots \right]. \tag{1.2}$$

Но в операционном исчислении действие интегрирования рассматривается как применение символа $\frac{1}{n}$, вследствие чего

$$\frac{1}{p} \cdot 1 = \int_{0}^{t} dt = t ;$$

$$\frac{1}{p^{2}} \cdot 1 = \frac{t^{2}}{2!};$$

$$\frac{1}{p^{n}} \cdot 1 = \frac{t^{n}}{p!} \text{ и т.д.}$$

Следовательно, выражение (1.2) перепишется так:

$$x = 4 \int_{0}^{t} \left[1 - \frac{2t}{1!} + \frac{(2t)^{2}}{2!} - \dots + (-1)^{n} \frac{(2t)^{n}}{n!} + \dots \right] dt,$$

т.е.

$$x = 4 \int_{0}^{t} e^{-2t} dt = 2(1 - e^{-2t}).$$

Здесь можно видеть, как в операционном исчислении совершаются переходы от одних действий к более простым действиям, после чего в окончательном итоге происходит снова переход к нужным нам величинам. В этом и состоит основной принцип применения операционного метода.

Строгое обоснование операционного исчисления было дано позже [1], когда была установлена связь между функциональным преобразованием Лапласа (рис. 1.1)

$$\int_0^\infty f(\tau) e^{-p\tau} d\tau \,,$$

и операционным исчислением. Оказалось, что при преобразовании Лапласа оператор дифференцирования заменяется операцией умножения на некоторую комплексную величину [1].

Нахождение температурного поля твердого тела в задачах теплопроводности связано с решением дифференциальных уравнений с разнообразными краевыми условиями [6]. Необходимо иметь способы эффективного решения этих задач в целях практического использования. Остановимся на наиболее общем и простом по технике вычисления методе преобразования Лапласа, т.е. применим функциональное преобразование Лапласа [1]

$$F(s) = \int_0^\infty f(\tau) e^{-s\tau} d\tau . \tag{1.3}$$

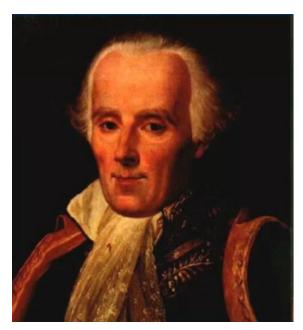


Рис. 1.1. Пьер Симон Лаплас (1749 – 1827 гг.)

Метод преобразования Лапласа состоит в том, что изучается не сама функция (оригинал), а ее видоизменение (изображение). Это видоизменение — преобразование — производится с помощью умножения на некоторую экспоненциальную функцию и интегрирования в определенных пределах.

Пусть изучаемая функция $y=f(\tau)$ есть кусочно-непрерывная функция вещественной переменной τ . Кусочно-непрерывной функцией называют однозначную функцию, имеющую в конечном интервале $(0 \le \tau \le \theta)$ конечное число разрывов непрерывности в точках $\tau_1, \tau_2, ..., \tau_k$. В каждом интервале (τ_{i-1}, τ_i) функция $f(\tau)$ непрерывна, причем она стремится к конечному пределу при приближении к границе.

Определение 1. Функция f, определенная на отрезке [a,b], называется кусочно-непрерывной на нем, если существует такое разбиение $\tau = \{x_i\}_{i=0}^{i=k}$ этого отрезка, что функция f непрерывна на каждом интервале (x_{i-1},x_i) , и существуют конечные пределы $f(x_{i-1}+0)=\lim_{x\to x_{i-1}+0}f(x)$ и $f(x_{i-1}-0)=\lim_{x\to x_{i-1}-0}f(x)$, $i=1,2,\ldots,k$.

Таким образом, функция кусочно-непрерывна на отрезке, если она имеет на нем только конечное число точек разрыва и притом только I рода (рис. 1.2).

Функцию $y = f(\tau)$ называют **оригиналом** функции.

Преобразование Лапласа функции $y = f(\tau)$ будет состоять в умножении ее на $e^{-s\tau}$ и интегрировании в пределах от 0 до ∞ :

$$F(s) = \int_0^\infty f(\tau) e^{-s\tau} d\tau , \qquad (1.4)$$

где $s=\xi+i\eta$ — некоторая комплексная величина.

Комплексное число — это выражение вида a+bi, где a,b — действительные числа, а i — мнимая единица, символ, квадрат которого равен минус единице, т.е. $i^2=-1$. Число a называется действительной частью, а число b — мнимой частью комплексного числа z=a+bi. У комплексных чисел есть удобное и наглядное геометрическое

представление: число z=a+bi можно изображать вектором с координатами (a,b) на декартовой плоскости. По теореме Пифагора длина вектора с координатами (a,b) равна $|z|=\sqrt{a^2+b^2}$ (рис. 1.3).

В результате интегрирования получим некоторую функцию F(s), которая называется преобразованной функцией по Лапласу, или **изображением** функции.

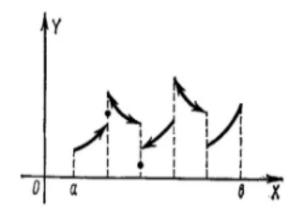


Рис. 1.2. Кусочно-непрерывная функция на отрезке [a,b]

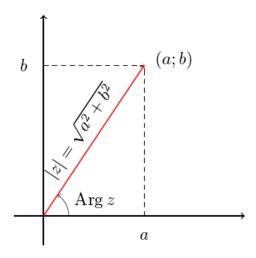


Рис. 1.3. Геометрическое представление комплексных чисел

Таким образом, преобразование Лапласа является интегральным преобразованием; это преобразование изображается символом $L[f(\tau)]$:

$$L[f(\tau)] = F(s) = \int_0^\infty f(\tau) e^{-s\tau} d\tau, \qquad (1.5)$$

причем изображение F(s) существует, если интеграл (1.4) сходится.

Условимся оригинал функции обозначать строчными буквами [1], а ее изображение — прописными буквами, например: $y(\tau)$ — оригинал функции, а Y(s) — изображение, тогда

$$L[y(\tau)] = Y(s).$$

Пример 1.1.

Пусть оригинал есть постоянная величина [1]

$$f(\tau) = A = \text{const} (\tau > 0).$$

Тогда по табл. А.1 имеем следующее решение:

$$L[A] = \int_{0}^{+\infty} A e^{-s\tau} d\tau = -\frac{A}{s} e^{-s\tau} \Big|_{0}^{\infty} = \frac{A}{s} , (s > 0).$$

Проверим решение в программе Maple 2017:

> restart: with(inttrans):

$$F(p) = \frac{A}{s}$$

Также проверим решение в программе Matlab R2013b:

Мы видим, что ответы в обеих программах совпадают с основным решением.

Задание 1.1. Найти изображение функции по оригиналу.

№ варианта	Оригинал функции
1	$\frac{1}{s}$
2	$\frac{1}{s^2}$
3	$\frac{1}{s^3}$
4	$\frac{1}{\sqrt{s}}$
5	$s^{-\frac{3}{2}}$
6	$\frac{1}{s^4}$
7	$\frac{1}{s-a}$
8	$\frac{1}{s+a}$
9	$\frac{1}{(s-a)^2}$
10	$\frac{1}{(s-a)^2}$ $\frac{1}{(s-a)^3}$ $\frac{1}{(s-a)^4}$ $\frac{1}{(s-a)^5}$
11	$\frac{1}{(s-a)^4}$
12	$\frac{1}{(s-a)^5}$

13	$\frac{1}{(s-a)(s-b)}$		
14	$\frac{s}{(s-a)(s-b)}$		
15	$\frac{1}{(s-a)(s-b)(s-b)}$		
16	$\frac{k}{s^2 + k^2}$		
17	$\frac{s}{s^2 + k^2}$		

Необходимо отметить, что не всякая функция F(s) имеет изображение. Например, не существует оригинала для функции $F(s)= \operatorname{tg} s$, так как полюсы этой функции расположены на всей вещественной оси ξ , а не слева от прямой σ .

Если функция $f(\tau)$ растет быстрее, чем $e^{\sigma\tau}$, то для нее не существует изображения. Например, функция $f(\tau) = e^{\tau^2}$ не имеет изображений, так как для нее интеграл Лапласа расходится.

Однако, например, разрывная функция $f(\tau) = \frac{1}{\sqrt{\tau}}$ имеет изобра-

жение $F(s) = \sqrt{\frac{\pi}{s}}$, так как интеграл Лапласа сходится.

Функция $f(\tau)$ может быть ступенчатой, например,

$$g_k(\tau) = \begin{cases} 0 \text{ при } 0 < \tau < k, \\ 1 \text{ при } \tau > k. \end{cases}$$

Изображение ее следующее:

$$L[g_k(\tau)] = \int_0^\infty g_k(\tau) e^{-s\tau} d\tau = \int_k^\infty e^{-s\tau} d\tau = -\frac{1}{s} e^{-s\tau} \Big|_k^\infty = \frac{e^{-sk}}{s}.$$

2. СВОЙСТВА ПРЕОБРАЗОВАНИЯ ЛАПЛАСА

2.1. СВОЙСТВО ЛИНЕЙНОСТИ

Преобразование Лапласа является линейным, т.е. если A и B — постоянные, то по определению преобразования Лапласа можно написать

$$L[Af(\tau) + Bg(\tau)] = AL[f(\tau)] + BL[g(\tau)] = AF(s) + BG(s), \tag{2.1}$$

где F(s) и G(s) – соответственно изображения функций $f(\tau)$ и $g(\tau)$.

Пользуясь этим свойством, можно найти изображения ряда функций.

Пример 2.1.

Пусть $f(\tau) = chk\tau$.

Тогла

$$L[\operatorname{ch}k(\tau)] = \frac{1}{2} \left\{ L[e^{k\tau} + e^{-k\tau}] \right\} = \frac{1}{2} \left(\frac{1}{s-k} + \frac{1}{s+k} \right) = \frac{s}{s^2 - k^2}.$$

Проверим решение в программе Matlab R2013b:

Мы видим, что ответ в этом решении с использованием программы полностью сопадает с решением аналитическим способом.

2.2. ИЗОБРАЖЕНИЕ ПРОИЗВОДНОЙ

Пусть

$$L[f(\tau)] = F(s)$$
.

Найлем

$$L[f'(\tau)],$$

где
$$f'(\tau) = \frac{df(\tau)}{d\tau}$$
.

Имеем

$$L[f(\tau)] = \int_{0}^{\infty} f'(\tau)e^{-s\tau}d\tau = e^{-s\tau}f(\tau)\Big|_{0}^{\infty} + s\int_{0}^{\infty} f(\tau)e^{-s\tau}d\tau.$$
 (2.2)

Если $f(\tau)$ принадлежит подклассу с асимптотическим свойством, то $e^{-s\tau}f(\tau) \to 0$, когда $\tau \to 0$, и равна f(0), когда $\tau \to 0$, т.е.

$$L[f'(\tau)] = sF(s) - f(0). \tag{2.3}$$

Следовательно, применяя функциональное преобразование Лапласа, операцию дифференцирования оригинала функции можно заменить алгебраическим действием над изображением.

$$L[f^{(n)}(\tau)] = s^{(n)}F(s) - s^{(n-1)}f(0) - s^{(n-2)}f'(0) - \dots - f^{(n-1)}(0).$$
 (2.4)

Пример 2.2.

Пусть $f(\tau) = \sin k\tau$, $f'(\tau) = k \cos k\tau$, $f''(\tau) = -k^2 \sin k\tau$.

Тогда

$$L[f^{('')}(\tau)] = s^2 F(s) - sf(0) - f^{(')}(0).$$

Подставляем $f''(\tau) = -k^2 \sin k\tau$ и выражение (17) из табл. А.1:

$$L[-k^2 \sin k\tau] = s^2 L(\sin k\tau) - s \sin k0 - k \cos k0.$$

$$L[-k^2 \sin k\tau] = s^2 L(\sin k\tau) - 0 - k1.$$

$$L[-k^2 \sin k\tau] = s^2 L(\sin k\tau) - k.$$

Отсюда

$$-k^{2}L[\sin k\tau] = s^{2}L(\sin k\tau) - k.$$

$$-k^{2}L[\sin k\tau] = s^{2}L(\sin k\tau) - k.$$

$$k = s^{2}L(\sin k\tau) + k^{2}L[\sin k\tau]$$

$$k = L(\sin k\tau) \left[s^{2} + k^{2}\right]$$

$$\frac{k}{\left[s^{2} + k^{2}\right]} = L(\sin k\tau).$$

$$L(\sin k\tau) = \frac{k}{\left[s^{2} + k^{2}\right]}.$$

2.3. ИНТЕГРИРОВАНИЕ ОРИГИНАЛА ФУНКЦИИ

Найдем изображение функции

$$g(\tau) = \int_{0}^{\tau} f(\theta) d\theta$$
,

т.е. найдем

$$L[g(\tau)] = L \left[\int_{0}^{\tau} f(\theta) d\theta \right].$$

Если $g(\tau)$ удовлетворяет нашим условиям, то

$$g'(\tau) = f(\tau),$$

далее, смотрим выражение (2.3)

$$L[g'(\tau)] = L[f(\tau)] = sL[g(\tau)] = sL \left[\int_{0}^{\tau} f(\theta) d\theta\right].$$

Так как $L[f(\tau)] = F(s)$ (согласно выражению (1) из табл. А.1), то

$$L\left[\int_{0}^{\tau} f(\theta)d\theta\right] = \frac{1}{s}F(s).$$

Применяя тот же прием, можно показать, что двукратное интегрирование оригинала функции соответствует делению изображения на s^2 :

$$L\left[\int_{0}^{\tau}\int_{0}^{\theta}f(\xi)d\xi d\theta\right] = \frac{1}{s^{2}}F(s).$$

3. ТЕОРЕМЫ ПОДСТАНОВКИ

3.1. ТЕОРЕМА ПОДОБИЯ

Пусть F(s) есть изображение функции $f(\tau)$. Сделаем замену τ на $a\tau$, где a — постоянная, тогда можно написать

$$L[f(a\tau)] = \int_{0}^{\infty} e^{-s\tau} f(a\tau) d\tau = \frac{1}{a} \int_{0}^{\infty} e^{-\frac{s}{a}\theta} f(\theta) d\theta = \frac{1}{a} F(\frac{s}{a}),$$

где $\theta = a\tau$.

Если сделать замену τ на $\frac{\tau}{a}$, то получим

$$L\left[f\left(\frac{\tau}{a}\right)\right] = \int_{0}^{\infty} e^{-s\tau} f\left(\frac{\tau}{a}\right) d\tau = a \int_{0}^{\infty} e^{-ast} f(t) dt = aF(as),$$

где $t=\frac{\tau}{a}$, т.е. замена независимой переменной τ на $a\tau$ в оригинале функции соответствует замене в изображении функции величины s на $\frac{s}{a}$ и делению изображения на a.

Пример 3.1.

Имеем
$$L[\cos \tau] = \frac{s}{s^2 + 1}$$
.

Тогда

$$L[\cos(a\tau)] = \frac{1}{a} \frac{\frac{s}{a}}{\left(\frac{s}{a}\right)^2 + 1} = \frac{s}{s^2 + a^2}.$$

Проверим решение в программе Matlab R2013b:

Мы видим, что ответ в этом решении с использованием программы полностью сопадает с решением аналитическим способом.

Задание 3.1. Используя теорему подобия, сделать вычисления с подстановкой коэффициента a.

№ варианта	Изображение функции
2	τ
3	$\frac{\tau^2}{2!}$
4	$\frac{1}{\sqrt{\pi \tau}}$
5	$e^{a au}$
6	$e^{-a\tau}$
7	$ au \cdot e^{a au}$
8	$\frac{\tau^2 e^{a\tau}}{2!}$
9	sin kτ
10	$\cos k \tau$
11	shkτ
12	$\frac{1}{\sqrt{\pi\tau}}\cos 2\sqrt{k\tau}$
13	$\frac{1}{\sqrt{\pi\tau}} \operatorname{ch} 2\sqrt{k\tau}$

14	$\frac{1}{\sqrt{\pi\tau}}\sin 2\sqrt{k\tau}$
15	$\frac{1}{\sqrt{\pi\tau}} \operatorname{sh} 2\sqrt{k\tau}$
16	$\frac{1}{\tau} \Big(\! e^{b \tau} - e^{k \tau} \Big)$
17	$\frac{2}{\tau}(1-\cos k\tau)$

3.2. ТЕОРЕМА СМЕЩЕНИЯ

Пусть имеется функции $f(\tau)$, удовлетворяющая обычным условиям; ее изображение есть F(s). Сделаем замену в изображении функции величины s на s-a, где a – постоянная. Тогда

$$F(s-a) = \int_{0}^{\infty} e^{-(s-a)\tau} f(\tau) d\tau = \int_{0}^{\infty} e^{-s\tau} e^{a\tau} f(\tau) d\tau = L[e^{a\tau} f(\tau)]$$

т.е. замена переменной s в изображении функции на s-a соответствует умножению оригиналу функции на величину $e^{a\tau}$.

Пример 3.2.

Имеем [1]
$$L[\cos k\tau] = \frac{s}{s^2 + k^2}$$
.

Тогда

$$\frac{s+a}{(s+a)^2+k^2} = L\left[e^{-a\tau}\cos k\tau\right]$$

Применяя обе теоремы одновременно, можно написать

$$F(as-b) = F\left\{a\left(s-\frac{b}{a}\right)\right\}L\left[\frac{1}{a}e^{\frac{b}{a}\tau}f\left(\frac{\tau}{a}\right)\right].$$

3.3. ТЕОРЕМА ЗАПАЗДЫВАНИЯ

Пусть функция $f(\tau)$, отличная от нуля только при $\tau > 0$, определяет течение некоторого процесса [1]. Рассмотрим функцию $f_b(\tau)$, определяющую течение такого же процесса, но запаздывающего на время b (см. рис. 3.1) [1]:

$$f_b(\tau) = \begin{cases} 0 \text{ при } 0 < \tau < b, \\ f(\tau - b) \text{ при } \tau > b. \end{cases}$$

Имеем

$$L[f(\tau)] = \int_{0}^{\infty} e^{-s\tau} f(\tau) d\tau = F(s).$$

Найдем изображение функции $f_b(\tau)$ [1]:

$$F_b(s) = L[f_b(\tau)] = \int_0^\infty e^{-s\tau} f_b(\tau) d\tau = \int_0^b e^{-s\tau} f_b(\tau) d\tau + \int_b^\infty e^{-s\tau} f_b(\tau) d\tau =$$

$$= \int_0^\infty e^{-s\tau} f(\tau - b) d\tau.$$

Вводя новую переменную $\vartheta = \tau - b$ и замечая, что пределы интегрирования будут от 0 до ∞ , получим [1]

$$F_b(s) = \int_0^\infty e^{-s(\vartheta+b)} f(\vartheta) d\vartheta = e^{-sb} \int_0^\infty f(\vartheta) e^{-s\vartheta} d\vartheta = e^{-sb} F(s),$$

T.e.

$$L[f_b(\tau)] = e^{-sb}F(s)$$

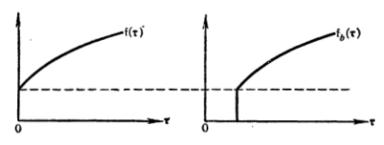


Рис. 3.1. Графики функций $f(\tau)$ и $f_b(\tau)$

4. ОБРАТНОЕ ПРЕОБРАЗОВАНИЕ ЛАПЛАСА

Символ $L[f(\tau)] = F(s)$ обозначал преобразование функции $f(\tau)$, т.е. по оригиналу функции находили изображение [1]. Это действие называют прямым преобразованием Лапласа. Во многих задачах необходимо найти оригиналы функции по ее изображению F(s). Условились символом $L^{-1}[F(s)]$ обозначать обратное преобразование Лапласа, которое должно обозначать искомую функцию, т.е. оригинал функции.

Если прямое преобразование дает изображение функции [1]

$$L[f(\tau)] = F(s),$$

то обратное преобразование должно давать оригинал функции

$$L^{-1}[F(s)] = f(\tau).$$

В большинстве рассматриваемых задач математической физики обратное преобразование является однозначным [1].

Обратное преобразование является линейным, что вытекает непосредственно из соотношения свойства линейности [1].

$$L^{-1}[AF(s)+BG(s)] = A[f(\tau)]+Bg(\tau) = AL^{-1}F(s)+BL^{-1}G(s).$$

4.1. ОСНОВНЫЕ ПРАВИЛА ПРЕОБРАЗОВАНИЯ ЛАПЛАСА

Здесь мы остановимся на обратной задаче: будем производить операции дифференцирования и интегрирования по параметру s изображения функции и искать, какому действию над оригиналом функции соответствуют эти операции.

4.1.1. ДИФФЕРЕНЦИРОВАНИЕ ИЗОБРАЖЕНИЯ

Теорема звучит следующим образом: «n-кратное дифференцирование изображения функции соответствует умножению оригинала на $(-\tau)^n$ »:

$$F^{(n)}(s) = L[(-\tau)^n f(\tau)].$$

4.1.2. ИНТЕГРИРОВАНИЕ ИЗОБРАЖЕНИЯ

Теорема звучит следующим образом: «Интегрирование изображения функции по параметру s в пределах от s до ∞ соответствует делению оригинала функции на τ »:

$$\int_{s}^{\infty} f(p)dp = \int_{0}^{\infty} \frac{f(\tau)}{\tau} e^{-s\tau} d\tau = L \left[\frac{f(\tau)}{\tau} \right].$$

4.1.3. УМНОЖЕНИЕ ИЗОБРАЖЕНИЙ

Теорема звучит следующим образом: «Произведению изображений функций соответствует свертывание оригиналов функций»:

$$F_{1}(s)F_{2}(s) = L[f_{1}^{*}(\tau)f_{2}(\tau)]$$

$$L^{-1}[F_{1}(s)F_{2}(s)] = f_{1}^{*}(\tau)f_{2}(\tau).$$

4.1.4. ТЕОРЕМА ЭФРОСА

Если F(s) есть изображение функции $f(\tau)$ [1], т.е.

$$F(s) = \int_{0}^{\infty} f(\tau) e^{-s\tau} d\tau,$$

то оригинал изображения

$$F[\varphi(s)] \Phi(s) = \int_{0}^{\infty} f^{*}(\vartheta) e^{-s\vartheta} d\vartheta$$

дается формулой

$$f^*(9) = \int_0^\infty f(\tau) \, \psi(\tau, 9) d\tau,$$

где $\psi(\tau,\vartheta)$ является решением интегрального уравнения

$$e^{-\tau\varphi}\Phi(s) = \int_{0}^{\infty} \psi(\tau, \vartheta)e^{-s\vartheta}d\tau.$$

Из теоремы Эфроса получаем следствие [1]: если $f(\tau)$ есть оригинал изображения F(s) , т.е.

$$L[f(\tau)] = F(s),$$

то имеет место равенство

$$\frac{F(\sqrt{s})}{\sqrt{s}} = L \left[\frac{1}{\sqrt{\pi \tau}} \int_{0}^{\infty} e^{-\frac{u^{2}}{4\tau}} f(\tau) d\tau \right].$$

5. МЕТОД РЕШЕНИЯ ПРОСТЕЙШИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Метод состоит из следующих трех этапов [1]:

- 1. К дифференциальному уравнению применяем преобразование Лапласа и вместо дифференциального уравнения для оригинала функции получаем уравнение для изображения функции. Так как преобразование Лапласа является интегральным преобразованием и обладает свойствами операторов, то вместо дифференциального уравнения для оригинала функции получаем алгебраическое уравнение относительно изображения.
- 2. Полученное алгебраическое уравнение решается относительно изображения функции, причем *s* (некоторая комплексная величина) рассматривается как число. Следовательно, второй этап сводится к нахождению решения для изображения функции.
- 3. С помощью известных соотношений между изображением функции F(s) и ее оригиналом $f(\tau)$ находится решение для оригинала функции, т.е. оригинала искомой функции.

Таким образом, вначале применяется прямое преобразование, а затем обратное. Преимущество этого метода состоит в том, что решается не дифференциальное уравнение для оригинала функции, а алгебраическое уравнение для изображения [1].

Пример 5.1.

Имеем [1]

$$\frac{d^2z}{d\tau^2} - k^2z = 0.$$

Пусть искомая функция $z(\tau)$ равна A при $\tau = 0$,

т.е.
$$z(0) = A = \text{const}$$
, а ее производная $z'(0) = \frac{dz(0)}{d\tau} = D = \text{const}$.

Дифференциальное уравнение можно переписать так:

$$z''(\tau) - k^2 z(\tau) = 0.$$

Применим прямое преобразование Лапласа [1]

$$Z(s) = \int_{0}^{\infty} e^{-s\tau} z(\tau) d\tau = L[z(\tau)],$$

т.е.

$$L[z''(\tau)] - k^2 L[z(\tau)] = 0.$$

Пользуясь свойством изображения производной, а именно [1]:

$$L[f^{(n)}(\tau)] = s^{(n)}F(s) - s^{(n-1)}f(0) - s^{(n-2)}f'(0) - \dots - f^{(n-1)}(0),$$

получим

$$s^2Z(s)-As-D-k^2Z(s)=0.$$

Последнее уравнение является простым алгебраическим уравнением относительно изображения функции Z(s); решаем его, считая s простым числом [1]:

$$s^{2}Z(s)-k^{2}Z(s) = As + D,$$

$$Z(s)[s^{2}-k^{2}] = As + D.$$

Находим похожее выражение по табл. А.1, это выражения (19) и (20), и подгоняем полученное выражение к табличным $\frac{s}{s^2-k^2}$ и

$$\frac{k}{\left(s^2-k^2\right)}:$$

$$Z(s) = \frac{As + D}{s^2 - k^2} = A \frac{s}{s^2 - k^2} + D \frac{k}{\left(s^2 - k^2\right) k}.$$

В результате получили решение относительно изображения. Применяем обратное преобразование Лапласа, используя свойство линейности:

$$L^{-1}\left[Z(s)\right] = AL^{-1}\left[\frac{s}{s^2 - k^2}\right] + \frac{D}{k}L^{-1}\left[\frac{k}{\left(s^2 - k^2\right)}\right],$$

откуда по табл. А.1 (выражения (19) и (20)) имеем

$$z(\tau) = A \operatorname{ch} k \tau + \frac{D}{k} \operatorname{sh} k \tau = A \operatorname{ch} k \tau + B \operatorname{sh} k \tau,$$

где
$$B = \frac{D}{k} = \text{const.}$$

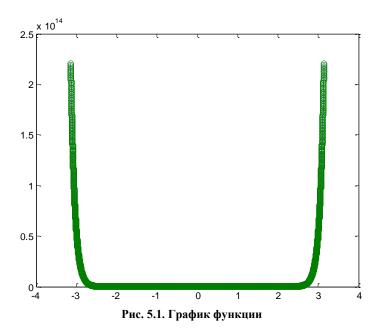
Если $z'(0) = \frac{dz(0)}{d\tau} = D = 0$, то решение дифференциального урав-

нения примет вид

$$z(\tau) = A \operatorname{ch} k \tau$$
.

Проверим решение в программе Matlab R2013b:

```
>> syms z k z(t) s % Объявляем переменные
ddz = diff(z,t,2); % Объявите дифференциальные уравнения.
eqn1 = ddz - k^2z == 0
eqn1LT = laplace(eqn1,t,s) % Прямое преобразование Лапласа
syms z LT
eqn1LT = subs(eqn1LT,[laplace(z,t,s)],[z LT])
eqns = [eqn1LT];
vars = [z LT];
[z LT] = solve(eqns, vars)
zsol = ilaplace(z_LT,s,t); % Обратное преобразование Лапласа
zsol = simplify(zsol)
eqn1(t) =
-z(t)*k^2 + D(D(z))(t) == 0
eqn1LT(s) =
s^2+laplace(z(t), t, s) - s*z(0) - k^2+laplace(z(t), t, s) - D(z)(0) == 0
eqn1LT(s) =
-z_LT*k^2 + z_LT*s^2 - z(0)*s - D(z)(0) == 0
-(D(z)(0) + s*z(0))/(k^2 - s^2)
(\exp(k*t)*(D(z)(0) + k*z(0)))/(2*k) - (\exp(-k*t)*(D(z)(0) - k*z(0)))/(2*k)
vars = [z(0)];
values = [10];
zsol = subs(zsol, vars, values)
zsol =
(\exp(-k^*t)^*(10^*k - D(z)(0)))/(2^*k) + (\exp(k^*t)^*(10^*k + D(z)(0)))/(2^*k)
 t = -pi:pi/5000:pi;
 zsol = (\exp(-k*t)*(10*k))/(2*k) + (\exp(k*t)*(10*k))/(2*k);
 plot(t, zsol) % рисунок
 hold on
 zsol2 = 10*cosh(k*t);
 scatter(t,zsol2)% рисунок
 hold off
```



Мы видим решение уравнения в виде графика функции (рис. 5.1).

Задание 5.1. Решить дифференциальное уравнение, применяя преобразование Лапласа.

№ п/п	Уравнение	При $\tau = 0$	Производная
1	$\frac{d^2z}{d\tau^2} - k^2z = 0$	z(0) = A = const	$z'(0) = \frac{dz(0)}{d\tau} = D = \text{const}$
2	$\frac{d^2z}{d\tau^2} + k^2z = 0$	z(0) = A = const	$z'(0) = \frac{dz(0)}{d\tau} = D = \text{const}$
3	$\frac{d^2z}{d\tau^2} + kz = 0$	z(0) = A = const	$z'(0) = \frac{dz(0)}{d\tau} = D = \text{const}$
4	$\frac{d^2z}{d\tau^2} - kz = 0$	z(0) = A = const	$z'(0) = \frac{dz(0)}{d\tau} = D = \text{const}$

5	$\frac{d^2z}{d\tau^2} - k^3z = 0$	z(0) = A = const	$z'(0) = \frac{dz(0)}{d\tau} = D = \text{const}$
6	$\frac{d^2z}{d\tau^2} + k^3z = 0$	z(0) = A = const	$z'(0) = \frac{dz(0)}{d\tau} = D = \text{const}$
7	$\frac{d^2z}{d\tau^2} - \sqrt{k}z = 0$	z(0) = A = const	$z'(0) = \frac{dz(0)}{d\tau} = D = \text{const}$
8	$\frac{d^2z}{d\tau^2} + \sqrt{k}z = 0$	z(0) = A = const	$z'(0) = \frac{dz(0)}{d\tau} = D = \text{const}$
9	$\frac{d^2z}{d\tau^2} - \sqrt[3]{k}z = 0$	z(0) = A = const	$z'(0) = \frac{dz(0)}{d\tau} = D = \text{const}$
10	$\frac{d^2z}{d\tau^2} + \sqrt[3]{k}z = 0$	z(0) = A = const	$z'(0) = \frac{dz(0)}{d\tau} = D = \text{const}$

Пример 5.2.

Имеем

$$z''(\tau) - z'(\tau) - 6z(\tau) = 2.$$

Пусть искомая функция удовлетворяет условиям z(0)=1, z'(0)=0.

Применим прямое преобразование Лапласа

$$L[z''(\tau)] - L[z'(\tau)] - 6L[z(\tau)] = L[2].$$

Пользуясь свойством изображения производной, а именно:

$$L[f^{(n)}(\tau)] = s^{(n)}F(s) - s^{(n-1)}f(0) - s^{(n-2)}f'(0) - \dots - f^{(n-1)}(0),$$

для удобства функцию z через f запишем

$$L[f''(\tau)] - L[f'(\tau)] - 6L[f(\tau)] = L[2],$$

распишем каждое слагаемое:

$$L[f''(\tau)] = s^2 F(s) - sf(0) - f(0),$$

$$L[f'(\tau)] = sF(s) - f(0), \quad L[f(\tau)] = F(s), \quad L[A] = \frac{A}{s}.$$

Собираем теперь выражение:

$$\begin{split} \left[s^2 F(s) - s f(0) - f(0) \right] - \left[s F(s) - f(0) \right] - \left[6 F(s) \right] &= \frac{2}{s}, \\ s^2 F(s) - s f(0) - f(0) - s F(s) + f(0) - 6 F(s) &= \frac{2}{s}, \\ s^2 F(s) - s F(s) - s f(0) - f(0) + f(0) - 6 F(s) &= \frac{2}{s}, \end{split}$$

Так как z(0) = 1, то

$$s^{2}F(s) - sF(s) - s - 1 + 1 - 6F(s) = \frac{2}{s},$$

$$s^{2}F(s) - sF(s) - s - 6F(s) = \frac{2}{s}.$$

Или с учетом замены переменных

$$s^2Z(s)-sZ(s)-s-6Z(s)=\frac{2}{s}$$
.

Полученное алгебраическое уравнение с одним неизвестным Z(s) решаем относительно Z(s):

$$s^{2}Z(s)-sZ(s)-6Z(s) = \frac{2}{s}+s,$$

$$Z(s)[s^{2}-s-6] = \frac{2}{s}+s,$$

$$Z(s) = \frac{\frac{2}{s}+s}{[s^{2}-s-6]},$$

$$Z(s) = \frac{s^{2}+2}{s[s^{2}-s-6]}.$$

Из таблицы А.1 нам понадобятся выражения (1), (9) и (10), поэтому преобразуем последнее выражение под табличные значения.

Разложим дробь на простые множители с использованием https://math.semestr.ru/math/factor.php и получим:

Вход

partial fractions
$$\frac{s^2 + 2}{s(s^2 - s - 6)}$$

Результат

$$\frac{s^2 + 2}{s(s^2 - s - 6)} = -\frac{1}{3s} + \frac{3}{5(s + 2)} + \frac{11}{15(s - 3)}$$
$$Z(s) = -\frac{1}{3}\frac{1}{s} + \frac{11}{15}\frac{1}{(s - 3)} + \frac{3}{5}\frac{1}{(s + 2)},$$

откуда

$$L^{-1}[Z(s)] = -\frac{1}{3}L^{-1}\left[\frac{1}{s}\right] + \frac{11}{15}L^{-1}\left[\frac{1}{(s-3)}\right] + \frac{3}{5}L^{-1}\left[\frac{1}{(s+2)}\right].$$

Решение имеем в виде

$$z(\tau) = -\frac{1}{3}1 + \frac{11}{15}e^{3\tau} + \frac{3}{5}e^{-2\tau}.$$

Проверим решение в программе Matlab R2013b:

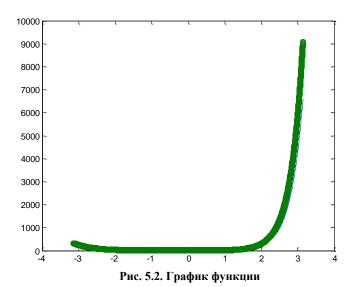
Уравнение после всех начальных условий

```
syms z k z(t) s % Объявляем переменные
ddz = diff(z,t,2); % Объявите дифференциальные
уравнения.
dz = diff(z,t,1); % Объявите дифференциальные урав-
нения.
eqn1 = ddz - dz - 6*z == 2
eqn1LT = laplace(eqn1,t,s) % Прямое преобразование
Лапласа
syms z LT
eqn1LT = subs(eqn1LT, [laplace(z,t,s)], [z LT])
eqns = [eqn1LT];
vars = [z LT];
[z LT] = solve(eqns, vars)
zsol = ilaplace(z LT,s,t); % Обратное преобразова-
ние Лапласа
zsol = simplify(zsol)
vars = [z(0)]; % Задаем начальные условия
values = [1];
zsol = subs(zsol, vars, values)
zsol = exp(3*t)*(8/15) - exp(-2*t)*(-4/5) - 1/3 %
```

```
zsol = exp(3*t)*(8/15) - exp(-2*t)*(-4/5) - 1/3;
plot(t, zsol) % Сроим 1 график
hold on
                  eqn1(t) =
                  D(D(z))(t) - D(z)(t) - 6*z(t) == 2
                  eqn1LT(s) =
                  z(0) - D(z)(0) - s*laplace(z(t), t, s) - s*z(0) + s^2*laplace(z(t), t, s) + s*z(0) + s^2*laplace(z(t), t, s) + s*z(0) + s
6*laplace(z(t), t, s) == 2/s
                  eqn1LT(s) =
                  z(0) - 6*z LT - D(z)(0) - s*z(0) - s*z LT + s^2*z LT == 2/s
                  z LT =
                  -(D(z)(0) - z(0) + s*z(0) + 2/s)/(-s^2 + s + 6)
                  zso1 =
                  \exp(-2*t)*((3*z(0))/5 - D(z)(0)/5 + 1/5) + \exp(3*t)*((2*z(0))/5 +
D(z)(0)/5 + 2/15) - 1/3
                  zsol =
                  \exp(3*t)*(D(z)(0)/5 + 8/15) - \exp(-2*t)*(D(z)(0)/5 - 4/5) - 1/3
                  zsol =
                  (4*exp(-2*t))/5 + (8*exp(3*t))/15 - 1/3
```

t = -pi:pi/5000:pi;

Мы видим решение уравнения в виде графика функции (рис. 5.2).



Пример 5.3.

Имеем

$$y''(\tau)-k^2y(\tau)=0.$$

Применим прямое преобразование Лапласа

$$L[y''(\tau)]-k^2L[y(\tau)]=L[0].$$

Пользуясь свойством изображения производной, а именно:

$$L[f^{(n)}(\tau)] = s^{(n)}F(s) - s^{(n-1)}f(0) - s^{(n-2)}f'(0) - \dots - f^{(n-1)}(0),$$

для удобства функцию z через f запишем

$$L[y''(\tau)] - k^2 L[y(\tau)] = L[0],$$

распишем каждое слагаемое:

$$L[y''(\tau)] = s^2 F(s) - sy(0) - y(0),$$

$$L[y(\tau)] = F(s),$$

$$L[A] = \frac{A}{s}.$$

Собираем теперь выражение:

$$\begin{split} \left[s^2 F(s) - s y(0) - y(0) \right] - \left[k^2 F(s) \right] &= \frac{0}{s}, \\ s^2 F(s) - s y(0) - y(0) - k^2 F(s) &= 0, \\ s^2 F(s) - k^2 F(s) - s y(0) - y(0) &= 0, \\ s^2 F(s) - k^2 F(s) &= s y(0) + y(0), \\ F(s) \left[s^2 - k^2 \right] &= y(0) \left[s + 1 \right], \\ F(s) &= \frac{y(0) \left[s + 1 \right]}{\left[s^2 - k^2 \right]}. \end{split}$$

Предположим что в y(0)=1.

$$F(s) = \frac{[s+1]}{[s^2 - k^2]},$$

$$F(s) = \frac{s}{[s^2 - k^2]} + \frac{1}{[s^2 - k^2]},$$

$$F(s) = \frac{1}{2(k+s)} + \frac{1}{2(k-s)} + \frac{1}{[s^2 - k^2]},$$

Смотрим табл. А.1, и это выражения (9) и (10).

А вторую дробь обнуляем, так как она не вносит свое значение в решение выражения, откуда

$$L^{-1}[F(s)] = \frac{1}{2}L^{-1}\left[\frac{1}{k+s}\right] + \frac{1}{2}L^{-1}\left[\frac{1}{(s-k)}\right].$$

Решение имеем в виде

$$y(\tau) = \frac{1}{2}e^{-k\tau} + \frac{1}{2}e^{k\tau}.$$

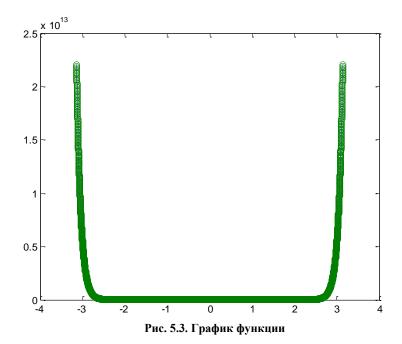
В общем виде решение запишем следующим образом:

$$y(\tau) = C_1 e^{k\tau} + C_2 e^{-k\tau}.$$

Проверим решение в программе Matlab R2013b:

```
syms z k z(t) s % Объявляем переменные ddz = diff(z,t,2); % Объявите дифференциальные уравнения.
eqn1 = ddz - k^2*z == 0
eqn1LT = laplace(eqn1,t,s) % Прямое преобразование Лапласа
syms z_LT
eqn1LT = subs(eqn1LT,[laplace(z,t,s)],[z_LT])
eqns = [eqn1LT];
vars = [z_LT];
[z_LT] = solve(eqns,vars)
zsol = ilaplace(z_LT,s,t); % Обратное преобразование Лапласа
zsol = simplify(zsol)
```

```
vars = [z(0)]; % Задаем начальные условия
values = [1];
zsol = subs(zsol, vars, values)
zsol = (exp(k*t)*(k))/(2*k) + (exp(-k*t)*(k)
))/(2*k) % Уравнение после всех начальных условий
t = -pi:pi/5000:pi;
k=10; % Допустим
zsol = (exp(k*t)*(k))/(2*k) + (exp(-k*t)*(k)
))/(2*k);
plot(t, zsol) % Сроим 1 график
hold on
zsol2 = 1/2*exp(-k*t)+1/2*exp(k*t); % Сравниваем
решения 2 уравнений
scatter(t,zsol2)% рисунок
hold off
   egn1(t) =
   -z(t)*k^2 + D(D(z))(t) == 0
   eqn1LT(s) =
   s^2*laplace(z(t), t, s) - s*z(0) - k^2*laplace(z(t), t, s) - D(z)(0) == 0
   eqn1LT(s) =
   -z LT*k^2 + z LT*s^2 - z(0)*s - D(z)(0) == 0
   z LT =
   -(D(z)(0) + s*z(0))/(k^2 - s^2)
   zso1 =
   (\exp(k^*t)^*(D(z)(0) + k^*z(0)))/(2^*k) - (\exp(-k^*t)^*(D(z)(0) -
k*z(0))/(2*k)
   zsol =
   (\exp(k^*t)^*(D(z)(0) + k))/(2^*k) + (\exp(-k^*t)^*(k - D(z)(0)))/(2^*k)
   zsol =
   \exp(k*t)/2 + \exp(-k*t)/2
    Мы видим решение уравнения в виде графика функции (рис. 5.3).
```



Пример 5.4.

Имеем

$$y''(\tau) + k^2 y(\tau) = a.$$

Применим прямое преобразование Лапласа

$$L[y''(\tau)] + k^2 L[y(\tau)] = L[a].$$

Пользуясь свойством изображение производной, а именно:

$$L[f^{(n)}(\tau)] = s^{(n)}F(s) - s^{(n-1)}f(0) - s^{(n-2)}f'(0) - \dots - f^{(n-1)}(0),$$

распишем каждое слагаемое:

$$L[y''(\tau)] = s^2 F(s) - sy(0) - y(0),$$

$$L[y(\tau)] = F(s),$$

$$L[a] = \frac{a}{s}.$$

Собираем теперь выражение:

$$\begin{aligned} \left[s^2 F(s) - sy(0) - y(0) \right] + \left[k^2 F(s) \right] &= \frac{a}{s}, \\ s^2 F(s) - sy(0) - y(0) + k^2 F(s) &= \frac{a}{s}, \\ s^2 F(s) + k^2 F(s) - sy(0) - y(0) &= \frac{a}{s}, \\ s^2 F(s) + k^2 F(s) &= \frac{a}{s} + sy(0) + y(0), \\ F(s) \left[s^2 + k^2 \right] &= \frac{a}{s} + y(0) \left[s + 1 \right], \\ F(s) &= \frac{y(0) \left[s + 1 \right] + \frac{a}{s}}{\left[s^2 + k^2 \right]}. \end{aligned}$$

Предположим, что в y(0) = 1.

$$F(s) = \frac{[s+1] + \frac{a}{s}}{[s^2 + k^2]},$$

$$F(s) = \frac{s[s+1] + a}{[s^2 + k^2]},$$

$$F(s) = \frac{s[s+1] + a}{s} : \frac{[s^2 + k^2]}{1},$$

$$F(s) = \frac{s[s+1] + a}{s} \cdot \frac{1}{[s^2 + k^2]},$$

$$F(s) = \frac{s[s+1] + a}{s[s^2 + k^2]}.$$

Разложим дробь на простые множители с использованием https://math.semestr.ru/math/factor.php и получим: Расширенная форма

$$-\frac{as}{k^2(k^2+s^2)} + \frac{a}{k^2s} + \frac{s}{k^2+s^2} + \frac{1}{k^2+s^2}.$$

Смотрим табличные выражения, это (18) и (1) из табл. А.1:

$$L[A] = \int_{0}^{+\infty} A e^{-s\tau} d\tau = -\frac{A}{s} e^{-s\tau} \Big|_{0}^{\infty} = \frac{A}{s}, \quad (s > 0).$$

А вторую дробь обнуляем, так как она не вносит свое значение в решение выражения, откуда

$$L^{-1}[F(s)] = L^{-1}\left[-\frac{a}{k^2}\frac{s}{s^2+k^2}\right] + L^{-1}\left[\frac{s}{s^2+k^2}\right] + L^{-1}\left[\frac{a}{k^2}\frac{1}{s}\right].$$

Решение имеем в виде

$$y(\tau) = -\frac{a}{k^2}\cos k\tau + \cos k\tau + \frac{a}{k^2}.$$

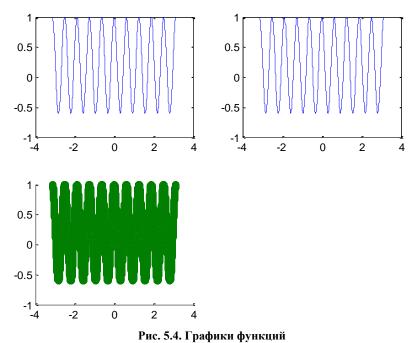
Проверим решение в программе Matlab R2013b:

```
syms z k z(t) s a % Объявляем переменные
ddz = diff(z,t,2); % Объявите дифференциальные
vравнения.
eqn1 = ddz + k^2*z == a
eqn1LT = laplace(eqn1,t,s) % Прямое преобразование
Лапласа
syms z LT
eqn1LT = subs(eqn1LT, [laplace(z,t,s)], [z LT])
eqns = [eqn1LT];
vars = [z LT];
[z LT] = solve(eqns, vars)
zsol = ilaplace(z LT,s,t); % Обратное преобразова-
ние Лапласа
zsol = simplify(zsol)
vars = [z(0)]; % Задаем начальные условия
values = [1];
zsol = subs(zsol, vars, values)
zsol = a/k^2 + (k^2*cos(k*t) - a*cos(k*t))/k^2 %
```

```
t = -pi:pi/5000:pi;
k=10; % Допустим
a=20:
zsol = a/k^2 + (k^2*cos(k*t) - a*cos(k*t))/k^2;
zsol2 = (-a/k^2)*cos(k*t)+cos(k*t)+(a/k^2); %
Сравниваем решения 2 уравнений
figure
subplot(2,2,1)
plot(t, zsol) % Сроим 1 график с начальными
условиями и полученным решением
subplot(2,2,2)
plot(t, zsol2)% Записываем решение, полученное
с использованием преобразования Лапласа
subplot(2,2,3) % Сравниваем два решения на графике
hold on
plot(t, zsol)
scatter(t, zsol2)
hold off
```

Решение:

```
eqn1(t) =
z(t)*k^2 + D(D(z))(t) == a
egn1LT(s) =
k^2 = a/s
egn1LT(s) =
z LT*k^2 + z LT*s^2 - z(0)*s - D(z)(0) == a/s
z LT =
(D(z)(0) + s*z(0) + a/s)/(k^2 + s^2)
zso1 =
(k*\sin(k*t)*D(z)(0) - a*\cos(k*t) + k^2*z(0)*\cos(k*t))/k^2 + a/k^2
zsol =
a/k^2 + (k^2*\cos(k*t) - a*\cos(k*t) + k*\sin(k*t)*D(z)(0))/k^2
zsol =
a/k^2 - (a*\cos(k*t) - k^2*\cos(k*t))/k^2
    Мы видим решение уравнения в виде графиков функции
(рис. 5.4).
```



6. ГРАНИЧНЫЕ УСЛОВИЯ ПЕРВОГО РОДА

6.1. ПОЛУОГРАНИЧЕННОЕ ТЕЛО

В граничных условиях первого рода задается температура поверхности тела как функция времени [1].

Имеем тело, с одной стороны ограниченное плоскостью уz, а с другой стороны — простирающееся в бесконечность. Такое тело называют полуограниченным телом, например бесконечно длинный стержень, боковая поверхность которого имеет идеальную изоляцию.

Постановка задачи 6.1. Температура полуограниченного тела во всех точках имеет определенное значение, заданное некоторой функцией f(x), т.е. T(x, 0) = f(x). Будем решать задачу на *охлаждение* тела, так как задача на нагревание всегда может быть сведена к задаче на охлаждение путем замены переменной.

В начальный момент времени конец стержня принимает температуру $T_{\rm c}$, которая поддерживается затем постоянной в течение всего процесса теплообмена.

Необходимо найти распределение температуры по длине стержня в любой момент времени.

Задачу математически можно сформулировать следующим образом. Имеем дифференциальное уравнение

$$\frac{\partial T(x,\tau)}{\partial \tau} = a \frac{\partial^2 T(x,\tau)}{\partial x^2} \quad (\tau > 0, \, 0 < x < \infty)$$
 (6.1)

при краевых условиях:

$$T(x,0) = f(x) - \text{H.y.},$$
 (6.2)

$$T(0,\tau) = T_c = \text{const} - \Gamma.$$
у. I рода, (6.3)

$$\frac{\partial T(+\infty,\tau)}{\partial x} = 0 - \text{r.y.}, \tag{6.4}$$

причем отсутствует перепад температуры в бесконечно удаленной точке (рис. 6.1).

Вначале для упрощения расчета примем $T_{\rm c}=0$.

Требуется найти $T(x,\tau)$ [1].

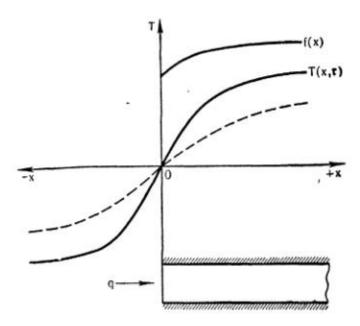


Рис. 6.1. Распределение температуры в полуограниченном стержне с тепловой изоляцией боковой поверхности

Применим преобразование Лапласа к дифференциальному уравнению (6.1) [1]:

$$L\left[\frac{\partial T(x,\tau)}{\partial \tau}\right] = L\left[a\frac{\partial^2 T(x,\tau)}{\partial x^2}\right],\tag{6.5}$$

где
$$L[T(x,\tau)] = \int_{0}^{\infty} T(x,\tau)e^{-s\tau}d\tau = T_L(x,s)$$
.

В левой части уравнения надо взять преобразование Лапласа от первой производной. Согласно основной теореме операционного метода, оно равно произведению изображения на оператор s минус значение функции в начальный момент времени, т.е.

$$L[f'(\tau)] = sF(s) - f(0),$$

$$L\left[\frac{\partial T(x,\tau)}{\partial \tau}\right] = sT_L(x,s) - f(x) = a\frac{\partial^2}{\partial x^2} \{L[T(x,\tau)]\} = a\frac{d^2T_L(x,s)}{dx^2}.$$
 (6.6)

Таким образом, дифференциальное уравнение (6.1) в частных производных для оригинала функции $T(x,\tau)$ превращается в обыкновенное дифференциальное уравнение для изображения $T_L(x,s)$, так как $T_L(x,s)$ не зависит от времени τ . При этом переходе используется начальное условие.

Перепишем уравнение (6.6) в виде

$$sT_{L}(x,s) - f(x) = a \frac{d^{2}T_{L}(x,s)}{dx^{2}},$$

$$\frac{sT_{L}(x,s) - f(x)}{a} = \frac{d^{2}T_{L}(x,s)}{dx^{2}},$$

$$\frac{sT_{L}(x,s) - f(x)}{a} = T_{L}''(x,s),$$

$$\frac{sT_{L}(x,s)}{a} - \frac{f(x)}{a} = T_{L}''(x,s),$$

$$T_{L}''(x,s) - \frac{sT_{L}(x,s)}{a} + \frac{f(x)}{a} = 0.$$
(6.7)

Рассмотрим более простую задачу, когда температура стержня до охлаждения всюду одинакова и равна T_0 , т.е. $f(x) = T_0 = \text{const.}$ В этом случае уравнение (6.7) примет более простой вид [1]

$$T_L''(x,s) - \frac{sT_L(x,s)}{a} + \frac{T_0}{a} = 0,$$

$$T_L''(x,s) - \frac{s}{a} \left[T_L(x,s) - \frac{T_0}{s} \right] = 0.$$
(6.8)

Общее решение данного дифференциального уравнения для изображения можно написать так [1]:

$$T_L(x,s) - \frac{T_0}{s} = A_1 e^{\sqrt{\frac{s}{a}}x} + B_1 e^{-\sqrt{\frac{s}{a}}x},$$
 (6.9)

где A_1 и B_1 – постоянные, определяемые из граничных условий.

Применим преобразование Лапласа к граничным условиям [1]:

$$L[T(0,\tau)] = 0, T_L(0,s) = 0.$$
 (6.10)

$$L\left[\frac{\partial T(+\infty,\tau)}{\partial x}\right] = 0, \ T_L'(+\infty,s) = 0.$$
 (6.11)

Из условия (6.11) следует, что $A_1 = 0$, так как в противном случае первый член в правой части (6.11) неограниченно возрастает с ростом x, а именно:

$$0 = T_L'(+\infty, s) = \sqrt{\frac{s}{a}} A_1 e^{\sqrt{\frac{s}{a}}(+\infty)} - \sqrt{\frac{s}{a}} B_1 e^{-\sqrt{\frac{s}{a}}(+\infty)},$$

Следовательно, $A_1 = 0$.

Воспользуемся условием (6.10) [1]:

$$0 - \frac{T_0}{s} = B_1 e^{-\sqrt{\frac{s}{a}} \cdot 0},$$

T.e.

$$-\frac{T_0}{\mathfrak{s}}=B_1\,,$$

тогда решение для изображения (6.9) будет иметь вид со всеми граничными условиями

$$T_L(x,s) - \frac{T_0}{s} = -\frac{T_0}{s}e^{-\sqrt{\frac{s}{a}}x}.$$

Для нахождения оригинала воспользуемся табл. А.1 изображений функций — это выражение (50).

В нашей задаче $k = \frac{x}{\sqrt{a}}$.

Следовательно, решение упрощенной задачи будет [1]

$$\frac{T_0}{s} - T_L(x,s) = \frac{T_0}{s} e^{-\sqrt{\frac{s}{a}}x},$$

$$T_0 - T(x, \tau) = T_0 \left[1 - \operatorname{erf}\left(\frac{x}{2\sqrt{a\tau}}\right) \right],$$

откуда

$$\frac{T(x,\tau)}{T_0} = \operatorname{erf}\left(\frac{x}{2\sqrt{a\tau}}\right).$$

Если температура конца стержня не равна нулю, а равна $T_c = \text{const}$, то граничное условие (6.10) напишем так [1]:

$$L[T(0,\tau)] = L[T_c], T_L(0,s) = \frac{T_c}{s}.$$
 (6.12)

Следовательно, постоянная $B_1 = -\frac{T_0 - T_c}{s}$, так как $T_0 > T_c$. Тогда решение для изображения примет вид [1]

$$\frac{T_0}{s} - T_L(x,s) = \frac{T_0 - T_c}{s} e^{-\sqrt{\frac{s}{a}x}}.$$

Применяя аналогичный прием перевода изображения в оригинал, т.е. обратное преобразование Лапласа, получим

$$T_0 - T(x, \tau) = (T_0 - T_c) \left[1 - \operatorname{erf}\left(\frac{x}{2\sqrt{a\tau}}\right) \right] = (T_0 - T_c) \left[\operatorname{erfc}\left(\frac{x}{2\sqrt{a\tau}}\right) \right],$$

где $\operatorname{erfc}(u) = 1 - \operatorname{erf}(u)$.

Это решение можно написать так [1]:

$$\frac{T(x,\tau) - T_{c}}{T_{0} - T} = \operatorname{erf}\left(\frac{x}{2\sqrt{a\tau}}\right).$$

$$T(x,\tau) = T_c + \left[(T_0 - T) \operatorname{erf}\left(\frac{x}{2\sqrt{a\tau}}\right) \right].$$

Напишем это решение в критериальной форме. Отношение $\frac{T(x,\tau)-T_{\rm c}}{T_0-T}$ является относительной избыточной температурой.

Обозначим это отношение через θ , т.е. [1]

$$\theta = \frac{T(x,\tau) - T_{\rm c}}{T_0 - T} .$$

Отношение $\frac{a\tau}{x^2}$ является числом гомохронности для процессов чистой теплопроводности, называемым числом Фурье [1] для координаты x.

$$\text{Fo}_x = \frac{a\tau}{x^2}$$
.

Тогда решение напишем так [1]:

$$\theta = \operatorname{erf}\left(\frac{1}{2\sqrt{\operatorname{Fo}_x}}\right).$$

Проверим решение в программе Matlab R2013b:

```
syms z k z(t) s a % Объявляем переменные
ddz = diff(z,t,2); % Объявите дифференциальные
уравнения.
egn1 = - a*ddz == 0
dz = diff(z,t,1); % Объявите дифференциальные
уравнения.
eqn2 = dz ==0
eqn = eqn2 + eqn1
 egn1LT = laplace(egn,t,s) % Прямое преобразование
Лапласа
syms z LT
eqn1LT = subs(eqn1LT,[laplace(z,t,s)],[z LT])
eqns = [eqn1LT];
vars = [z LT];
[z LT] = solve(eqns, vars)
zsol = ilaplace(z LT,s,t); % Обратное
преобразование Лапласа
```

```
zsol = simplify(zsol)
 vars = [z(0)]; % Задаем начальные условия
values = [1];
zsol = subs(zsol, vars, values)
zsol = a*exp(t/a)*1 - a*1 + 1 % Задаем начальные
условия в полученном решении
х = 0:pi/5000:pi/3; % Задаем граничные условия
k=1; % Допустим
a=1;
zsol = a*exp(x/a)*1 - a*1 + 1;
х2=0:0.1:1; % Задаем граничные условия
y=1+(20*erf(x2/(2*sqrt(20*pi))));
figure
subplot(2,2,1)
plot(x, zsol) % Сроим 1 график с начальными
условиями и полученным решением
subplot(2,2,2)
plot(x2,y)% Записываем решение, полученное
с использованием преобразования Лапласа
subplot(2,2,3) % Сравниваем два решения на графике
hold on
plot(x, zsol)
scatter(x2,y)
hold off
      eqn1(t) = -a*D(D(z))(t) == 0
      eqn2(t) = D(z)(t) == 0
      eqn(t) = D(z)(t) - a*D(D(z))(t) == 0
      eqn1LT(s) = s*laplace(z(t), t, s) - z(0) + a*(D(z)(0) + s*z(0) -
s^2*laplace(z(t), t, s) == 0
      eqn1LT(s) = s*z LT - z(0) + a*(-z LT*s^2 + z(0)*s + D(z)(0)
== 0
      z_LT = (z(0) - a*(D(z)(0) + s*z(0)))/(-a*s^2 + s)
      zsol = z(0) - a*D(z)(0) + a*exp(t/a)*D(z)(0)
      zsol = a*exp(t/a)*D(z)(0) - a*D(z)(0) + 1
      zsol = a*exp(t/a) - a + 1
```

Мы видим решение уравнения в виде графиков функций (рис. 6.2).

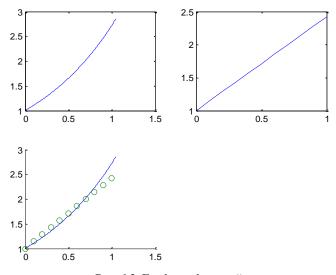


Рис. 6.2. Графики функций

Постановка задачи 6.2. Температура полуограниченного тела во всех точках имеет $\vartheta(x, 0) = 0$. Будем решать задачу на *нагревание* тела [1].

Задачу на нагревание тела с некоторой заданной начальной температурой T_0 , когда температура поверхности в начальный момент времени мгновенно становится постоянной и равной $T_{\rm c}$ ($T_{\rm c} > T_0$), можно свести к задаче на охлаждение путем простой замены переменной.

Необходимо найти распределение температуры по длине стержня в любой момент времени.

Задачу математически можно сформулировать следующим образом. Имеем дифференциальное уравнение

$$\frac{\partial \theta}{\partial \tau} = a \frac{\partial^2 \theta}{\partial x^2} \quad (\tau > 0, \, 0 < x < \infty), \tag{6.13}$$

где $\vartheta = T_0 - T$.

При краевых условиях

$$\vartheta(x,0) = 0$$
 – H.y., (6.14)

$$\theta_{\rm II}(0,\tau) = T_0 - T_{\rm c} = \theta_{\rm c} = {\rm const} - {\rm r.y.}$$
 I рода, (6.15)

причем $T_{\rm c} > T_0$.

Требуется найти $\vartheta(x,\tau)$.

Следовательно, выведенная формула будет справедлива на нагревание тела, при θ

$$\theta = \frac{T_{c} - T}{T_{c} - T_{0}} = 1 - \frac{T - T_{0}}{T_{c} - T_{0}}.$$

Таким образом, при переходе к задаче на нагревание в решении для охлаждения тела безразмерную величину θ надо заменить на $\frac{T_{\rm c}-T}{T_{\rm c}-T_0}$ или $1-\frac{T-T_0}{T_{\rm c}-T_0}$ [1].

В нашем случае для остывания тела решение имеет вид

$$\frac{T(x,\tau)-T_{\rm c}}{T_0-T}=\mathrm{erf}\bigg(\frac{x}{2\sqrt{a\tau}}\bigg),$$

или

$$\theta = \operatorname{erf}\left(\frac{1}{2\sqrt{\operatorname{Fo}_x}}\right).$$

Тогда в случае нагрева тела имеем

$$\theta = \operatorname{erf}\left(\frac{1}{2\sqrt{\operatorname{Fo}_x}}\right),\,$$

где
$$\theta = \frac{T_{\rm c} - T}{T_{\rm c} - T_0} = 1 - \frac{T - T_0}{T_{\rm c} - T_0}$$
 .

В окончательном виде имеем

$$\frac{T_{\rm c} - T}{T_{\rm c} - T_0} = \operatorname{erf}\left(\frac{x}{2\sqrt{a\tau}}\right).$$

6.2. НЕОГРАНИЧЕННАЯ ПЛАСТИНА

Под неограниченной пластиной обычно понимают такую пластину, ширина и длина которой бесконечно велики по сравнению с толщиной. Таким образом, неограниченная пластина представляет собой тело, ограниченное двумя параллельными плоскостями. Изменение температуры происходит только в одном направлении x, в других

направлениях y и z температура постоянна $\left(\frac{\partial T}{\partial y} = \frac{\partial T}{\partial z} = 0\right)$. Следовательно, задача является одномерной [1].

Постановка задачи. Дано распределение температуры по толщине пластины в виде некоторой функции f(x). В начальный момент времени ограничивающие поверхности мгновенно охлаждаются до некоторой температуры $T_{\rm c}$, которая поддерживается постоянной на протяжении всего процесса охлаждения. Найти распределение температуры по толщине пластины и расход тепла в любой момент времени.

Поместим начало координат в середину, толщину пластины обозначим через 2R, т.е. R – половина толщины пластины.

Математическое условие задачи может быть сформулировано следующим образом. Имеем дифференциальное уравнение [1]

$$\frac{\partial T(x,\tau)}{\partial \tau} = a \frac{\partial^2 T(x,\tau)}{\partial x^2} \quad (\tau > 0, -R < x < +R)$$
 (6.16)

при краевых условиях:

$$T(x,0) = f(x) - \text{H.y.},$$
 (6.17)

$$T(+R,\tau) = T_c = \text{const} - \Gamma.$$
у. I рода, (6.18)

$$T(-R,\tau) = T_c = \text{const} - \Gamma.y.$$
 (6.19)

Применим преобразование Лапласа к дифференциальному уравнению (6.16) [1]:

$$L\left[\frac{\partial T(x,\tau)}{\partial \tau}\right] = L\left[a\frac{\partial^2 T(x,\tau)}{\partial x^2}\right],\tag{6.20}$$

где
$$L[T(x,\tau)] = \int_0^\infty T(x,\tau)e^{-s\tau}d\tau = T_L(x,s)$$
.

В левой части уравнения надо взять преобразование Лапласа от первой производной. Согласно основной теореме операционного метода, оно равно произведению изображения на оператор s минус значение функции в начальный момент времени, т.е. [1]

$$L[f'(\tau)] = sF(s) - f(0),$$

$$L\left[\frac{\partial T(x,\tau)}{\partial \tau}\right] = sT_L(x,s) - f(x) = a\frac{\partial^2}{\partial x^2} \{L[T(x,\tau)]\} = a\frac{d^2T_L(x,s)}{dx^2}. \quad (6.21)$$

Таким образом, дифференциальное уравнение (6.16) в частных производных для оригинала функции $T(x,\tau)$ превращается в обыкновенное дифференциальное уравнение для изображения $T_L(x,s)$, так как $T_L(x,s)$ не зависит от времени τ . При этом переходе используется начальное условие [1].

Перепишем уравнение (6.21) в виде [1]

$$sT_{L}(x,s) - f(x) = a \frac{d^{2}T_{L}(x,s)}{dx^{2}},$$

$$\frac{sT_{L}(x,s) - f(x)}{a} = \frac{d^{2}T_{L}(x,s)}{dx^{2}},$$

$$\frac{sT_{L}(x,s) - f(x)}{a} = T''_{L}(x,s),$$

$$\frac{sT_{L}(x,s) - f(x)}{a} = T''_{L}(x,s),$$

$$T''_{L}(x,s) - \frac{sT_{L}(x,s)}{a} + \frac{f(x)}{a} = 0.$$
(6.22)

Начальное условие $T(x,0) = T_0 = \text{const}$ нами использовано при переходе от уравнения в частных производных для оригинала $T(x,\tau)$ к уравнению (6.22) для изображения $T_L(x,s)$, а именно при применении преобразования Лапласа к производной температуры по времени.

Граничные условия для изображения будут иметь вид [1]

$$T_L(R,s) = \frac{T_c}{s},$$
 $T_L'(0,s) = 0.$ (6.23)

Решение дифференциального уравнения (6.22) можно написать так [1]:

$$T_L(x,s) - \frac{T_0}{s} = A \operatorname{ch} \sqrt{\frac{s}{a}} x + B \operatorname{sh} \sqrt{\frac{s}{a}} x, \tag{6.24}$$

где A и B – постоянные, определяемые из граничных условий (6.23).

По условию симметрии B = 0, так как [1]

$$T_L'(0,s) = \left[\sqrt{\frac{s}{a}}A \operatorname{sh}\sqrt{\frac{s}{a}}x + \sqrt{\frac{s}{a}}B \operatorname{ch}\sqrt{\frac{s}{a}}x\right]_{x=0} = \sqrt{\frac{s}{a}}B = 0,$$

откуда B=0.

Постоянную A находим из первого граничного условия (6.23) [1]

$$T_L(R,s) = \frac{T_0}{s} + A \operatorname{ch} \sqrt{\frac{s}{a}} R = \frac{T_c}{s},$$

откуда

$$A = -\frac{T_0 - T_c}{s \cdot \text{ch}\sqrt{\frac{s}{a}R}}.$$

Таким образом, решение для изображения будет иметь вид

$$\frac{T_0}{s} - T_L(x, s) = \frac{(T_0 - T_c) \operatorname{ch} \sqrt{\frac{s}{a}} x}{s \cdot \operatorname{ch} \sqrt{\frac{s}{a}} R} = \frac{\Phi(s)}{\Psi(s)}.$$

Можно показать, что правая часть равенства есть отношение двух обобщенных полиномов относительно s, а именно [1]

$$\Phi(s) = (T_0 - T_c) \operatorname{ch} \sqrt{\frac{s}{a}} x = (T_0 - T_c) \left(1 + \frac{x^2}{2!a} s + \frac{x^4}{4!a^2} s^2 + \dots \right),$$

$$\psi(s) = s \left(1 + \frac{R^2}{2!a} s + \frac{R^4}{4!a^2} s^2 + \dots \right).$$

Теорему разложения можно написать так [1]:

$$L^{-1}\left[\frac{\Phi(s)}{\psi(s)}\right] = \sum_{n=1}^{n} \frac{\Phi(s_n)}{\psi'(s_n)} e^{s_n \tau},$$

где s_n – корни полинома $\psi(s)$.

Найдем корни функции $\psi(s) = s \cdot \text{ch} \sqrt{\frac{s}{a}} R$, для чего приравняем ее нулю.

Тогда получим:

- 1) простой корень s=0;
- бесчисленное множество простых корней, определяемых из соотношения

$$i\sqrt{\frac{s_n}{a}}R = \mu_n = (2n-1)\frac{\pi}{2},$$

откуда

$$s_n = -\frac{a\mu_n^2}{R^2} = -\frac{(2n-1)^2\pi^2a}{4R^2}$$
.

Затем найдем $\psi'(s)$:

$$\psi'(s) = \frac{sR}{2\sqrt{as}} \operatorname{sh} \sqrt{\frac{s}{a}} R + \operatorname{ch} \sqrt{\frac{s}{a}} R = \frac{1}{2} \sqrt{\frac{s}{a}} R \operatorname{sh} \sqrt{\frac{s}{a}} R + \operatorname{ch} \sqrt{\frac{s}{a}} R.$$

Имеем

$$\lim_{s \to 0} \psi'(s) = 1,$$

$$\lim_{s \to s_n} \psi'(s) = \frac{1}{2} i \mu_n \operatorname{sh} i \mu_n = -\frac{1}{2} \mu_n \sin \mu_n = \psi'(s_n),$$

$$\sin \mu_n = (-1)^{n+1}.$$

Найдем величину $\Phi(s_n)$:

$$\Phi(0) = (T_0 - T_c),$$

$$\Phi(s_n) = (T_0 - T_c) \operatorname{ch} \sqrt{\frac{s_n}{a}} x = (T_0 - T_c) \operatorname{ch} i \mu_n \frac{x}{R} = (T_0 - T_c) \operatorname{ccos} \mu_n \frac{x}{R}.$$

Окончательно получим

$$L^{-1}\left[\frac{T_0}{s} - T_L(x, s)\right] = L^{-1}\left[\frac{(T_0 - T_c) \operatorname{ch} \sqrt{\frac{s}{a}} x}{s \cdot \operatorname{ch} \sqrt{\frac{s}{a}} R}\right],$$

$$T_0 - T(x, \tau) = (T_0 - T_c) - (T_0 - T_c) \sum_{n=1}^{\infty} \frac{2}{\mu_n} (-1)^{n+1} \cos \mu_n \frac{x}{R} \exp\left(-\mu_n^2 \frac{a\tau}{R^2}\right),$$

или

$$\theta = \frac{T(x,\tau) - T_c}{T_0 - T_c} = \sum_{n=1}^{\infty} A_n \cos \mu_n \frac{x}{R} \exp\left(-\mu_n^2 \text{Fo}\right),$$

где $A_n=rac{2}{\mu_n}ig(-1ig)^{n+1}$ — начальная тепловая амплитуда, Fo = $rac{a au}{R^2}$ — число Фурье.

Тогда в случае нагрева тела имеем

$$\theta = \sum_{n=1}^{\infty} A_n \cos \mu_n \frac{x}{R} \exp(-\mu_n^2 \text{Fo}),$$

где
$$\theta = \frac{T_{\rm c} - T}{T_{\rm c} - T_0} = 1 - \frac{T - T_0}{T_{\rm c} - T_0}$$
.

В окончательном виде имеем:

$$\frac{T_{c} - T}{T_{c} - T_{0}} = \sum_{n=1}^{\infty} A_{n} \cos \mu_{n} \frac{x}{R} \exp\left(-\mu_{n}^{2} \text{Fo}\right)$$

Проверим решение в программе Matlab R2013b:

```
syms z k z(t) s a % Объявляем переменные ddz = diff(z,t,2); % Объявите дифференциальные уравнения.
eqn1 = - a*ddz ==0
dz = diff(z,t,1); % Объявите дифференциальные уравнения.
eqn2 = dz ==0
eqn = eqn2+eqn1
eqn1LT = laplace(eqn,t,s) % Прямое преобразование Лапласа
syms z_LT
eqn1LT = subs(eqn1LT,[laplace(z,t,s)],[z_LT])
eqns = [eqn1LT];
vars = [z_LT];
[z LT] = solve(eqns,vars)
```

```
zsol = ilaplace(z LT,s,t); % Обратное
преобразование Лапласа
zsol = simplify(zsol)
vars = [z(0)];% Задаем начальные условия
values = [1];
zsol = subs(zsol, vars, values
zsol = a*exp(t/a)*1 - a*1 + 1 % Задаем начальные
условия в полученном решении
x = -pi/3:pi/1000:0; % Задаем граничные условия
в полученном решении
k=1; % Допустим
a=1;
zsol = a*exp(x/a)*1 - a*1 + 1;
x2=-1:0.001:-0.5;
y=1*cos(x2)*exp(-0.5); % Записываем решение,
полученное с использованием преобразования Лапласа
figure
subplot(2,2,1)
plot(x, zsol) % Сроим 1 график с начальными
условиями и полученным решением
subplot(2,2,2)
plot(x2,y)% Записываем решение, полученное
с использованием преобразования Лапласа
subplot (2,2,3) % Сравниваем два решения на графике
hold on
plot(x, zsol)
scatter(x2,y)
hold off
eqn1(t) =
-a*D(D(z))(t) == 0
egn2(t) =
D(z)(t) == 0
eqn(t) =
D(z)(t) - a*D(D(z))(t) == 0
eqn1LT(s) =
s*laplace(z(t), t, s) - z(0) + a*(D(z)(0) + s*z(0) - s^2*laplace(z(t), t, s)) ==
ean1LT(s) =
s*z_LT - z(0) + a*(-z_LT*s^2 + z(0)*s + D(z)(0)) == 0
(z(0) - a*(D(z)(0) + s*z(0)))/(-a*s^2 + s)
```

$$zsol = z(0) - a*D(z)(0) + a*exp(t/a)*D(z)(0)$$

 $zsol = a*exp(t/a)*D(z)(0) - a*D(z)(0) + 1$
 $zsol = a*exp(t/a) - a + 1$

Мы видим решение уравнения в виде графиков функций (рис. 6.3).

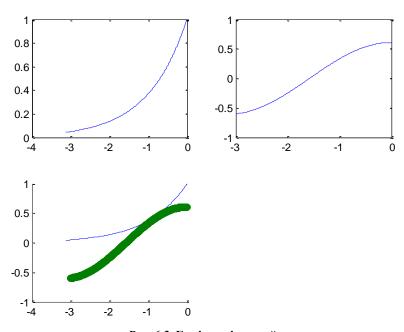


Рис. 6.3. Графики функций

7. ГРАНИЧНЫЕ УСЛОВИЯ ВТОРОГО РОДА

Если температура поверхности тела $(T_{\rm n})$ значительно меньше температуры печи $(T_{\rm c})$, то вторым членом в скобках можно пренебречь, и получим постоянный тепловой поток, воспринимаемый поверхностью тела [1]:

$$q_c \approx \sigma C T^4 = \text{const.}$$

Данное граничное условие является частным (простейшим) случаем граничного условия второго рода, когда тепловой поток является величиной постоянной. Решение задач с переменным тепловым потоком $q_{\rm n}=f(\tau)$ можно получить из соответствующих решений для постоянного теплового потока с помощью теоремы Дюамеля или методом интегральных преобразований Фурье и Ханкеля [1].

7.1. ПОЛУОГРАНИЧЕННОЕ ТЕЛО

Примером полуограниченного тела может служить длинный стержень, боковая поверхность которого изолирована, при условии, что толщина и ширина стержня незначительны по сравнению с длиной [1].

Постановка задачи [1]. Дано полуограниченное тело при температуре T_0 . Ограничивающая поверхность нагревается постоянным тепловым потоком $q_c = \text{const.}$ Изменение температуры происходит в одном направлении. Найти распределение температуры по данному направлению в любой момент времени.

Имеем [1]

$$\frac{\partial T(x,\tau)}{\partial \tau} = a \frac{\partial^2 T(x,\tau)}{\partial x^2} \quad (\tau > 0, \, 0 < x < \infty)$$
 (7.1)

при краевых условиях

$$T(x,0) = T_0 = \text{const} - \text{H.y.},$$
 (7.2)

$$\lambda \frac{\partial T(0,\tau)}{\partial x} + q_c = 0$$
 – г.у. II рода, (7.3)

$$\frac{\partial T(\infty, \tau)}{\partial x} = 0 - \text{r.y.} \quad T(\infty, \tau) = T_0.$$
 (7.4)

Решение дифференциального уравнения (7.1) для изображения $T_L(x,s)$ имеет вид [1]

$$T_L(x,s) - \frac{T_0}{s} = A_1 e^{\sqrt{\frac{s}{a}}x} + B_1 e^{-\sqrt{\frac{s}{a}}x}$$
 (7.5)

Граничные условия (7.3) и (7.4) для изображения можно написать так [1]:

$$\lambda T_L(0,s) + \frac{q_c}{s} = 0$$
; (7.6)

$$T_L(\infty, s) = 0. \tag{7.7}$$

Из условия (7.7) следует, что $A_{\rm l}=0$, так как при $x\to\infty$ температурный градиент стремится к нулю, а температура тела не может быть бесконечно большой [при $x\to\infty$ $T(\infty,\tau)\to T_0$] [1].

Постоянную B_1 определяем из граничного условия (7.6) [1]. Имеем

$$-\sqrt{\frac{s}{a}}B_1 + \frac{q_c}{\lambda s} = 0,$$

откуда

$$B_1 = \frac{q_c}{\lambda s \sqrt{\frac{s}{a}}}.$$

Следовательно, решение (7.5) примет вид [1]

$$T_L(x,s) - \frac{T_0}{s} = \frac{q_c \sqrt{a}}{\lambda s^{\frac{3}{2}}} e^{-\sqrt{\frac{s}{a}x}}.$$
 (7.8)

Для нахождения оригинала воспользуемся табл. А.1 изображения, согласно которой для нас подходит выражение (54) [1].

$$L^{-1} \left[\frac{1}{\int_{S}^{1+\frac{1}{2}n}} e^{-k\sqrt{s}} \right] = (4\tau)^{\frac{n}{2}} i^{n} \operatorname{erfc} \frac{k}{2\sqrt{\tau}}.$$
 (7.9)

Окончательно будем иметь [1]

$$T(x,\tau)-T_0 = \frac{2q_c}{\lambda} \sqrt{a\tau} i \operatorname{erfc} \frac{x}{2\sqrt{a\tau}}$$

ЗАКЛЮЧЕНИЕ

Данный учебное пособие позволит студентам направления «Теплоэнергетика и теплотехника» решить задачи по темам: свойства преобразования Лапласа, теоремы подстановки, обратное преобразование Лапласа, метод решения простейших дифференциальных уравнений, граничные условие первого и второго рода.

СПИСОК ЛИТЕРАТУРЫ

- Лыков, А. В. Теория теплопроводности : учебное пособие /
 А. В. Лыков. М. : Высшая школа, 1967. 599 с. URL : https://djvu.online/file/xgw6k0PwkBfEk
- 2. **Плескунов, М. А.** Операционное исчисление : учебное пособие / М. А. Плескунов. Екатеринбург : Изд-во Урал. ун-та, 2014. 143 с.
- 3. **Крайнов, А. Ю.** Операционное исчисление. Примеры и задачи : учебно-методическое пособие / А. Ю. Крайнов, Ю. Н. Рыжих. Томск : Том. ун-т, 2007. 104 с.
- 4. **Волков, И. К.** Интегральные преобразования и операционное исчисление: учебник для вузов / И. К. Волков, А. Н. Канатников. М.: Изд-во МГТУ им. Н. Э. Баумана, 2002. 228 с.

ПРИЛОЖЕНИЯ

Приложение А

А.1. Изображение некоторых функций [1]

№ п/п	Изображение функции $F(s) = L[f(au)]$	Оригинал функции $f(au)$
1	$\frac{1}{s}$	1
2	$\frac{1}{s^2}$	τ
3	$\frac{1}{s^n}$ (n = 1, 2, 3)	$\frac{\tau^{n-1}}{(n-1)!}$
4	$\frac{1}{\sqrt{s}}$	$\frac{1}{\sqrt{\pi\tau}}$
5	$s^{-\frac{3}{2}}$	$2\sqrt{\frac{\tau}{\pi}}$
6	$s^{-\left(n+\frac{1}{2}\right)}$ $(n=1, 2, 3)$	$\frac{2^{n} \tau^{n-\frac{1}{2}}}{[1 \cdot 3 \cdot 5 (2n-1)] \sqrt{\tau}}$
7	$\frac{\Gamma(m)}{s^m} \ (m > 0)$	$ au^{m ext{-}1}$
8	$\frac{\Gamma(m+1)}{s^{m+1}} = \frac{\Pi(m)}{s^{m+1}} (m > -1)$	$ au^m$
9	$\frac{1}{s-a}$	e^{at}
10	$\frac{1}{s+a}$	$e^{-a\tau}$
11	$\frac{1}{(s-a)^2}$	$ au \cdot e^{a au}$

Продолжение табл. А.1

№ п/п	Изображение функции $F(s) = L[f(\tau)]$	Оригинал функции $f(au)$
12	$\frac{1}{(s-a)^n} (n=1, 2, 3)$	$\frac{\tau^{n-1}e^{a\tau}}{(n-1)!}$
13	$\frac{\Gamma(m)}{(s-a)^m} \ (m>0)$	$ au^{m-1}e^{a au}$
14	$\frac{1}{(s-a)(s-b)}$	$\frac{1}{a-b} \Big(e^{a\tau} - e^{b\tau} \Big)$
15	$\frac{s}{(s-a)(s-b)}$	$\frac{1}{a-b} \Big(ae^{a\tau} - be^{b\tau} \Big)$
16	$\frac{1}{(s-a)(s-b)(s-b)}$	$\frac{(b-c)e^{a\tau} + (c-a)e^{b\tau} + (a-b)e^{c\tau}}{(a-b)(b-c)(c-a)}$
17	$\frac{k}{s^2 + k^2}$	s in kτ
18	$\frac{s}{s^2 + k^2}$	cos <i>k</i> τ
19	$\frac{k}{s^2 - k^2}$	shkτ
20	$\frac{s}{s^2 - k^2}$	ch <i>k</i> τ
21	$\frac{k}{\left(s+a\right)^2+k^2}$	$e^{-a au}\sin k au$
22	$\frac{s+a}{\left(s+a\right)^2+k^2}$	$e^{-a au}\cos k au$
23	$\frac{1}{s(s^2+k^2)}$	$\frac{1}{k^2} (1 - \cos k\tau)$
24	$\frac{1}{s^2(s^2+k^2)}$	$\frac{1}{k^2}(k\tau-\sin k\tau)$

Продолжение табл. А.1

№ π/π	Изображение функции $F(s) = L[f(\tau)]$	Оригинал функции $f(au)$
25	$\frac{1}{\left(s^2+k^2\right)^2}$	$\frac{1}{2k^3}(\sin k\tau - k\tau \cdot \cos k\tau)$
26	$\frac{s}{\left(s^2+k^2\right)^2}$	$\frac{\tau}{2k}\sin k\tau$
27	$\frac{s^2}{\left(s^2+k^2\right)^2}$	$\frac{1}{2k} \left(\sin k\tau + k\tau \cdot \cos k\tau \right)$
28	$\frac{s^2-k^2}{\left(s^2+k^2\right)^2}$	$ au \cdot \cos k au$
29	$\frac{s}{\left(s^2 + a^2\right)\left(s^2 + b^2\right)} \left(a^2 \neq b^2\right)$	$\frac{\cos a\tau - \cos b\tau}{b^2 - a^2}$
30	$\frac{1}{(s-a)^2 + k^2}$	$\frac{1}{k}e^{a\tau}\sin k\tau$
31	$\frac{3k^2}{s^3 + k^3}$	$e^{-k\tau} - e^{\frac{k\tau}{2}} \left(\cos \frac{k\tau\sqrt{3}}{2} - \sqrt{3} \sin \frac{k\tau\sqrt{3}}{2} \right)$
32	$\frac{4k^3}{s^4 + 4k^4}$	$\sin k \tau \cosh k \tau - \cos k \tau \sinh k \tau$
33	$\frac{s}{s^4 + 4k^4}$	$\frac{1}{2k^2}\sin k\tau \sinh k\tau$
34	$\frac{1}{s^4 - k^4}$	$\frac{1}{2k^3}(\mathrm{sh}k\tau-\mathrm{sin}k\tau)$
35	$\frac{s}{s^4 - k^4}$	$\frac{1}{2k^2}(\mathrm{ch}k\tau - \mathrm{cos}k\tau)$
36	$\frac{s^n}{\left(s^2+k^2\right)^{n+1}}$	$\frac{\tau^n \cdot \sin k\tau}{2^n k n!}$
37	$\frac{1}{s} \left(\frac{s-1}{s} \right)^n$	$\frac{1}{n!}e^{\tau}\frac{d^n}{d\tau^n}\Big(\tau^n e^{-\tau}\Big)$

Продолжение табл. А.1

№ п/п	Изображение функции $F(s) = L[f(\tau)]$	Оригинал функции $f(au)$
38	$\frac{s}{\left(s-k\right)^{\frac{3}{2}}}$	$\frac{1}{\sqrt{\pi\tau}}e^{k\tau}(1+2k\tau)$
39	$\left(\sqrt{s-a}-\sqrt{s-b}\right)$	$\frac{1}{2\sqrt{\pi\tau^3}}\Big(e^{b\tau}-e^{a\tau}\Big)$
40	$\frac{1}{\sqrt{s}+k}$	$\frac{1}{\sqrt{\pi\tau}} - ke^{k^2\tau} \operatorname{erfc} k\sqrt{\tau}$
41	$\frac{1}{\sqrt{s}+k}$ $\frac{\sqrt{s}}{s-k^2}$	$\frac{1}{\sqrt{\pi\tau}} + ke^{k^2\tau} \operatorname{erf} k\sqrt{\tau}$
42	$\frac{\sqrt{s}}{s+k^2}$	$\frac{1}{\sqrt{\pi\tau}} - \frac{2k}{\sqrt{\pi}} e^{-k^2\tau} \int_0^{k\sqrt{\tau}} e^{x^2} dx$
43	$\frac{1}{\sqrt{s}\left(s-k^2\right)}$	$\frac{1}{k}e^{-k^2\tau}$ erf $k\sqrt{\tau}$
44	$\frac{1}{\sqrt{s}\left(s^2+k^2\right)}$	$\frac{2}{k\sqrt{\pi}}e^{-k^2\tau}\int\limits_0^{k\sqrt{\tau}}e^{x^2}dx$
45	$\frac{b^2 - a^2}{\left(s - a^2\right)\left(b + \sqrt{s}\right)}$	$e^{a^2\tau} \Big[b - a \cdot \operatorname{erf} a \sqrt{\tau} \Big] - b e^{b^2\tau} \operatorname{erfc} b \sqrt{\tau}$
46	$\frac{1}{\sqrt{s}\left(\sqrt{s}+k\right)}$	$e^{k^2 au}$ erfc $k\sqrt{ au}$
47	$\frac{1}{(s+k)(\sqrt{s+b})}$	$\frac{1}{\sqrt{b-k}}e^{k\tau}\operatorname{erf}\sqrt{(b-k)\tau}$
48	$\frac{b^2 - k^2}{\sqrt{s}(s - k^2)(\sqrt{s} + b)}$	$e^{k^2 \tau} \left[\frac{b}{k} \operatorname{erf} k \sqrt{\tau} - 1 \right] + e^{b^2 \tau} \operatorname{erfc} b \sqrt{\tau}$
49	$e^{-k\sqrt{s}} \ (k \ge 0)$	$\frac{k}{2\sqrt{\pi\tau^3}}e^{-\frac{k^2}{4\tau}}$
50	$\frac{1}{s}e^{-k\sqrt{s}} \ (k \ge 0)$	$\operatorname{erfc} \frac{k}{2\sqrt{\tau}}$

Продолжение табл. А.1

№ п/п	Изображение функции $F(s) = L[f(\tau)]$	Оригинал функции $f(au)$
51	$\frac{1}{\sqrt{s}}e^{-k\sqrt{s}} \ (k \ge 0)$	$\frac{1}{\sqrt{\pi\tau}}e^{-\frac{k^2}{4\tau}}$
52	$\frac{1}{s\sqrt{s}}e^{-k\sqrt{s}} \ (k \ge 0)$	$2\sqrt{\tau} i \operatorname{erfc} \frac{k^2}{2\sqrt{\tau}} =$ $= 2\sqrt{\frac{\tau}{\pi}} e^{-\frac{k^2}{4\tau}} - k \operatorname{erfc} \frac{k}{2\sqrt{\tau}}$
53	$\frac{1}{s^2}e^{-k\sqrt{s}}$	$4\pi i^{2} \operatorname{erfc} \frac{k}{2\sqrt{\tau}} =$ $= \left(\tau + \frac{k^{2}}{2}\right) \operatorname{erfc} \frac{k}{2\sqrt{\tau}} - k\sqrt{\frac{\tau}{\pi}}e^{-\frac{k^{2}}{4\tau}}$
54	$\frac{1}{s\sqrt{s^n}}e^{-k\sqrt{s}}(k\geq 0)$	$(4\tau)^{\frac{n}{2}}i^n \operatorname{erfc} \frac{k}{2\sqrt{\tau}}$
55	$\frac{1}{s^n \sqrt{s}} e^{-2\sqrt{ks}} (k \ge 0)$	$\frac{1}{(n-1)!} \int_{0}^{\tau} (\tau - z)^{n-1} e^{-\frac{k}{z}} \frac{dz}{\sqrt{\pi z}}$
56	$\frac{be^{-k\sqrt{s}}}{s(b+\sqrt{s})}(k\geq 0)$	$\operatorname{erfc} \frac{k}{2\sqrt{\tau}} - e^{bk} e^{b^2 \tau} \times \operatorname{erfc} \left(b\sqrt{\tau} + \frac{k}{2\sqrt{\tau}} \right)$
57	$\frac{e^{-k\sqrt{s}}}{\sqrt{s}\left(b+\sqrt{s}\right)}\left(k\geq 0\right)$	$e^{bk}e^{b^2\tau}\operatorname{erfc}\left(b\sqrt{\tau}+\frac{k}{2\sqrt{\tau}}\right)$
58	$\frac{1}{1+\sqrt{\frac{s}{b}}}e^{-k\sqrt{s}}$	$\sqrt{\frac{b}{\pi \tau}} e^{-\frac{k^2}{4\tau}} - b e^{k\sqrt{b} + b\tau} \times $ $\times \operatorname{erfc}\left(\frac{k}{2\sqrt{\tau}} + \sqrt{b\tau}\right)$

Продолжение табл. А.1

№ п/п	Изображение функции $F(s) = L[f(\tau)]$	Оригинал функции $f(au)$
59	$\frac{1}{s\sqrt{s}\left(\sqrt{s}+b\right)}e^{-k\sqrt{s}}$	$\frac{2}{b}\sqrt{\frac{\tau}{\pi}}e^{-\frac{k^2}{4\tau}} - \frac{1+bk}{b^2}\operatorname{erfc}\left(\frac{k}{2\sqrt{\tau}}\right) + \frac{1}{b^2}e^{bk+b^2\tau}\operatorname{erfc}\left(\frac{k}{2\sqrt{\tau}} + b\sqrt{\tau}\right)$
60	$\frac{1}{\left(\sqrt{s}\right)^{n+1}\left(\sqrt{s}+b\right)}e^{-k\sqrt{s}}$	$\frac{1}{(-b)^n} e^{bk+b^2\tau} \operatorname{erfc}\left(\frac{k}{2\sqrt{\tau}} + b\sqrt{\tau}\right) - \frac{1}{(-b)^n} \sum_{m=0}^{n-1} \left(-2b\sqrt{\tau}\right)^m i^m \operatorname{erfc}\left(\frac{k}{2\sqrt{\tau}}\right)$
61	$\frac{1}{\left(\sqrt{s}+b\right)^2}e^{-k\sqrt{s}}$	$-2b\sqrt{\frac{\tau}{\pi}}e^{-\frac{k^2}{4\tau}} + (1+bk+2b^2\tau) \times e^{bk+b^2\tau}\operatorname{erfc}\left(\frac{k}{2\sqrt{\tau}} + b\sqrt{\tau}\right)$
62	$\frac{1}{s(\sqrt{s}+b)^2}e^{-k\sqrt{s}}$	$\frac{1}{b^2}\operatorname{erfc}\left(\frac{k}{2\sqrt{\tau}}\right) - \frac{2}{b}\sqrt{\frac{\tau}{\pi}}e^{-\frac{k^2}{4\tau}} - \frac{1}{b^2}\left(1 - bk - 2b^2\tau\right)e^{bk + b^2\tau}\operatorname{erfc}\left(\frac{k}{2\sqrt{\tau}} + b\sqrt{\tau}\right)$
63	$\frac{1}{(s-b)}e^{-k\sqrt{s}}$	$\frac{1}{2}e^{bk} \left\{ e^{-\frac{k^2}{\sqrt{b}}} \operatorname{erfc}\left(\frac{k}{2\sqrt{\tau}} - \sqrt{b\tau}\right) + e^{\frac{k}{\sqrt{b}}} \operatorname{erfc}\left(\frac{k}{2\sqrt{\tau}} + \sqrt{b\tau}\right) \right\}$
64	$\frac{\prod\left(\frac{1}{2}n\right)}{s^{2+1/2n}}e^{-k\sqrt{s}}$	$\frac{\tau^{1+1/2n}}{1+\frac{1}{2}n}\Pi\left(1+\frac{1}{2}n\right)2^{n+2} \times i^{n+2}\operatorname{erfc}\left(\frac{k}{2\sqrt{\tau}}\right)$

Продолжение табл. А.1

№ п/п	Изображение функции $F(s) = L[f(\tau)]$	Оригинал функции $f(au)$
65	$\frac{1}{s^{3/4}}e^{-k\sqrt{s}}$	$\frac{1}{\pi}\sqrt{\frac{k}{2\tau}}e^{-\frac{k^2}{8\tau}}K_{1/4}\left(\frac{k^2}{8\tau}\right)$
66	$\frac{1}{s}e^{-k\sqrt{s+b}}$	$\frac{1}{2} \left[e^{-k\sqrt{b}} \operatorname{erfc} \left(\frac{k}{2\sqrt{\tau}} - \sqrt{b\tau} \right) + e^{k\sqrt{b}} \operatorname{erfc} \left(\frac{k}{2\sqrt{\tau}} + \sqrt{b\tau} \right) \right]$
67	$\frac{1}{s}\sqrt{s+2b}e^{-k\sqrt{s+2b}}$	$\frac{1}{\sqrt{\pi\tau}} \exp\left[-\left(\frac{k^2}{4\tau} + 2b\tau\right)\right] + \frac{\sqrt{2b}}{2} \left[e^{-k\sqrt{2b}} \operatorname{erfc}\left(\frac{k}{2\sqrt{\tau}} - \sqrt{2b\tau}\right) - e^{k\sqrt{2b}} \operatorname{erfc}\left(\frac{k}{2\sqrt{\tau}} + \sqrt{2b\tau}\right)\right]$
68	$\frac{1}{s\sqrt{s+2b}}e^{-k\sqrt{s+2b}}$	$\frac{1}{2\sqrt{2b}} \left[e^{-k\sqrt{2b}} \operatorname{erfc} \left(\frac{k}{2\sqrt{\tau}} - \sqrt{2b\tau} \right) - e^{k\sqrt{2b}} \operatorname{erfc} \left(\frac{k}{2\sqrt{\tau}} + \sqrt{2b\tau} \right) \right]$
69	$\frac{1}{\sqrt{s^2 + k^2}}$	${J}_0(k au)$
70	$\frac{1}{\sqrt{s^2 - k^2}}$	$I_0(k au)$
71	$\frac{\sqrt{s+2k}}{\sqrt{s}} - 1$	$ke^{-k\tau}\big[I_0(k\tau)+I_1(k\tau)\big]$
72	$\frac{1}{\left(\sqrt{s+k}\right)\left(\sqrt{s+b}\right)}$	$e^{-\frac{1}{2}(k+b)\tau}I_0\!\!\left(\frac{k-b}{2}\tau\right)$

Продолжение табл. А.1

№ п/п	Изображение функции $F(s) = L[f(\tau)]$	Оригинал функции $f(au)$
73	$\frac{\Gamma(m)}{(s+k)^m(s+b)^m}; (m>0)$	$\sqrt{\pi} \left(\frac{\tau}{k-b} \right)^{m-\frac{1}{2}} e^{-\frac{1}{2}(k+b)\tau} \times I_{m-\frac{1}{2}} \left(\frac{k-b}{2} \tau \right)$
74	$\frac{1}{(s+k)^{1/2}(s+b)^{3/2}}$	$\tau e^{-\frac{1}{2}(k+b)\tau} \left[I_0 \left(\frac{k-b}{2} \tau \right) + I_1 \left(\frac{k-b}{2} \tau \right) \right]$
75	$\frac{\sqrt{s+2k} - \sqrt{s}}{\sqrt{s+2k} + \sqrt{s}}$	$\frac{1}{\tau}e^{-k\tau}I_1(k\tau)$
76	$\frac{(1-s)^n}{s^{n+\frac{1}{2}}}$	$\frac{n!}{(2n)!\sqrt{\pi\tau}}H_{2n}(\sqrt{\tau})$
77	$\frac{(1-s)^n}{s^{n+\frac{3}{2}}}$	$-\frac{n!}{(2n+1)!\sqrt{\pi}}H_{2n+1}(\sqrt{\tau})$
78	$\frac{\left(\sqrt{s^2 + k^2} - s\right)^{\nu}}{\sqrt{s^2 + k^2}}; (\nu > -1)$	$k^{ u}J_{ u}(k au)$
79	$\frac{1}{\left(s^2+k^2\right)^m};\left(m>0\right)$	$\frac{\sqrt{\pi}}{\Gamma(m)} \left(\frac{\mathfrak{r}}{2k}\right)^{m-1/2} J_{(m-1/2)}(k\mathfrak{r})$
80	$\frac{1}{\left(s^2-k^2\right)^n}; (m>0)$	$\frac{\sqrt{\pi}}{\Gamma(\mathrm{m})} \left(\frac{\tau}{2k}\right)^{m-1/2} I_{(m-1/2)}(k\tau)$
81	$\frac{1}{s}e^{-k/s}$	$J_0(2\sqrt{k au})$
82	$\frac{1}{\sqrt{s}}e^{-k/s}$	$\frac{1}{\sqrt{\pi\tau}}\cos 2\sqrt{k\tau}$
83	$\frac{1}{\sqrt{s}}e^{k/s}$	$\frac{1}{\sqrt{\pi\tau}} \operatorname{ch} 2\sqrt{k\tau}$

№ п/п	Изображение функции $F(s) = L[f(\tau)]$	Оригинал функции $f(au)$
84	$\frac{1}{s\sqrt{s}}e^{-k/s}$	$\frac{1}{\sqrt{\pi\tau}}\sin 2\sqrt{k\tau}$
85	$\frac{1}{s\sqrt{s}}e^{k/s}$	$\frac{1}{\sqrt{\pi\tau}} \operatorname{sh} 2\sqrt{k\tau}$
86	$\frac{1}{s^m}e^{-k/s}\left(m>0\right)$	$\left(rac{ au}{k} ight)^{rac{m-1}{2}}J_{(m-1)}\!\!\left(\!2\sqrt{k au} ight)$
87	$\frac{1}{s^m}e^{k/s}\left(m>0\right)$	$\left(\frac{\tau}{k}\right)^{\frac{m-1}{2}}I_{(m-1)}\!\!\left(\!2\sqrt{k\tau}\right)$
88	$\frac{e^{-k\sqrt{s(s+b)}}}{\sqrt{s(s+b)}}$	$\begin{cases} 0, \text{когда } 0 < \tau < k, \\ e^{-1/2b\tau} I_0 \bigg(\frac{1}{2} b \sqrt{\tau^2 - k^2} \bigg), \text{когда } \tau > k \end{cases}$
89	$\frac{e^{-k\sqrt{\left(s^2+b^2\right)}}}{\sqrt{\left(s^2+b^2\right)}}$	$\begin{cases} 0, \text{когда } 0 < \tau < k, \\ J_0 \left(b \sqrt{\tau^2 - k^2} \right), \text{когда } \tau > k \end{cases}$
90	$\frac{e^{-k\sqrt{\left(s^2-b^2\right)}}}{\sqrt{\left(s^2-b^2\right)}}$	$\begin{cases} 0, \text{когда } 0 < \tau < k, \\ I_0 \left(b \sqrt{\tau^2 - k^2} \right), \text{когда } \tau > k \end{cases}$
91	$\frac{e^{-k\left(\sqrt{s^2+b^2}+s\right)}}{\sqrt{s^2+b^2}}(k \ge 0)$	$J_0 \left(b \sqrt{\tau^2 + 2k\tau} \right)$
92	$\frac{b^{\nu}e^{-k\sqrt{s^2+b^2}}}{\sqrt{s^2+b^2}\left(\sqrt{s^2+b^2}+s\right)^{\nu}};$ (\nu > -1)	$\begin{cases} 0, \text{когда } 0 < \tau < k, \\ \left(\frac{\tau - k}{\tau + k}\right)^{1/2\nu} J_{\nu} \left(b\sqrt{\tau^2 - k^2}\right), \left(\tau > k\right) \end{cases}$
93	$\frac{1}{s} \lg s$	$\Gamma'(1) - \lg \tau; [\Gamma'(1) = -0,5772]$
94	$\frac{1}{s^k} \lg s$	$\tau^{k-1} \left\{ \frac{\Gamma'(k)}{[\Gamma(k)]^2} - \frac{\lg \tau}{\Gamma(k)} \right\}$

Продолжение табл. А.1

№ п/п	Изображение функции $F(s) = L[f(\tau)]$	Оригинал функции $f(au)$
95	$\frac{1}{s-k}\lg s(k>0)$	$e^{k\tau} [\lg k - \text{Ei}(-k\tau)];$ $\text{Ei}(-\tau) = -\int_{\tau}^{\infty} e^{-x} \frac{dx}{x} (\tau > 0)$
96	$\frac{\lg s}{s^2 + 1}$	$\cos \tau si(\tau) - \sin \tau ci(\tau)$
97	$\frac{1}{s}\lg(1+ks),(k>0)$	$-\operatorname{Ei}\!\left(-rac{ au}{k} ight)$
98	$\lg \frac{s-k}{s-b}$ $\lg \frac{s^2+k^2}{s^2}$	$\frac{1}{\tau} \Big(e^{b\tau} - e^{k\tau} \Big)$
99	5	$\frac{2}{\tau}(1-\cos k\tau)$
100	$\lg \frac{s^2 - k^2}{s^2}$	$\frac{2}{\tau}(1-\mathrm{ch}k\tau)$
101	$arctg - \frac{k}{s}$	$\frac{1}{\tau}\sin k\tau$
102	$\frac{1}{s} \operatorname{arctg} \frac{k}{s}$	si(kτ)
103	$e^{k^2s^2}\operatorname{erfc} ks\ (k>0)$	$\frac{1}{k\sqrt{\pi}}e^{-\frac{\tau^2}{4k}}$
104	$\frac{1}{s}e^{k^2s^2}\operatorname{erfc} ks\ (k>0)$	$\operatorname{erf} \frac{\tau}{2k}$
105	e^{ks} erfc \sqrt{ks} $(k > 0)$	$ \frac{\text{erf } \frac{\tau}{2k}}{\frac{\sqrt{k}}{\pi\sqrt{\tau}(\tau+k)}} $ $ \int 0(0 < \tau < k) $
106	$\frac{1}{\sqrt{s}}\operatorname{erfc}\sqrt{ks}$	$\begin{cases} 0 (0 < \tau < k) \\ (\pi \tau)^{-1/2} (\tau > k) \end{cases}$
107	$\frac{1}{\sqrt{s}}e^{ks}\operatorname{erfc}\sqrt{ks}\ (k>0)$	$\frac{1}{\sqrt{\pi(\tau+k)}}$
108	$\operatorname{erfc} \frac{k}{\sqrt{s}}$	$\frac{1}{\pi\tau}\sin(2k\sqrt{\tau})$

<u>№</u> п/п	Изображение функции	Оригинал функции $f(au)$
109	$F(s) = L[f(\tau)]$ $\frac{1}{\sqrt{s}} e^{\frac{k^2}{s}} \operatorname{erfc} \frac{k}{\sqrt{s}}$	$\frac{1}{\sqrt{\pi\tau}}e^{-2k\sqrt{\tau}}$
110	$K_0(ks)$	$\begin{cases} 0 \left(0 < \tau < k\right) \\ \left(\tau^2 - k^2\right)^{-1/2} \left(\tau > k\right) \end{cases}$
111	$K_0(k\sqrt{s})$	$\frac{1}{2\tau}\exp\left(-\frac{k^2}{4\tau}\right)$
112	$\frac{1}{s}e^{ks}K_1\left(\sqrt{ks}\right)$	$\frac{1}{k}\sqrt{\tau(\tau+2k)}$
113	$\frac{1}{\sqrt{s}} K_1 \left(k \sqrt{s} \right)$	$\frac{1}{k} \exp\left(-\frac{k^2}{4\tau}\right)$
114	$\frac{1}{\sqrt{s}}e^{k/s}K_0\left(\frac{k}{s}\right)$	$\frac{2}{\sqrt{\pi\tau}}K_0(2\sqrt{2k\tau})$
115	$\frac{1}{ks\sqrt{s}}\operatorname{th}k\sqrt{s}$	$1 - \sum_{n=1}^{\infty} \frac{8}{(2n-1)^2 \pi^2} \exp\left(-\frac{(2n-1)^2 \pi^2 \tau}{4k^2}\right)$
116	$I_{\nu}\left(\sqrt{\frac{s}{a}}x_{1}\right)K_{\nu}\left(\sqrt{\frac{s}{a}}x\right);$ $x > x_{1}$ $I_{\nu}\left(\sqrt{\frac{s}{a}}x\right)K_{\nu}\left(\sqrt{\frac{s}{a}}x_{1}\right);$ $x < x_{1}$	$\frac{1}{2\tau} \exp\left(-\frac{x^2 + x_1^2}{4a\tau}\right) I_{\nu}\left(\frac{xx_1}{2a\tau}\right) (\nu \ge 0)$
117	$s^{\nu/2}K_{\nu}(k\sqrt{s})$	$\frac{k^{\nu} \exp\left(-\frac{k^2 \tau}{4 \tau}\right)}{(2\tau)^{\nu+1}}$
118	$s^{\frac{\nu}{2}-1}K_{\nu}(k\sqrt{s})$	$\frac{2^{\nu-1}}{k^{\nu+1}}\Gamma\left(\nu,\frac{k^2}{4\tau}\right)$

I. Методом операционного исчисления найти частное решение дифференциального уравнения, удовлетворяющее заданным начальным условиям [2].

1)
$$\frac{d^2t}{dx^2} - 9x = e^{-2t}$$
, $x(0) = 0$, $\frac{dt(0)}{dx} = 0$.

2)
$$\frac{d^2t}{dx^2} + 9x = \cos 3t$$
, $x(0) = 0$, $\frac{dt(0)}{dx} = 0$.

3)
$$\frac{d^2t}{dx^2} + x = 3e^t$$
, $x(0) = 0$, $\frac{dt(0)}{dx} = 2$.

4)
$$\frac{d^2t}{dx^2} + x = 2 - 10e^{2t}$$
, $x(0) = 2$, $\frac{dt(0)}{dx} = -6$.

5)
$$\frac{d^2t}{dx^2} - 4x = t - 1$$
, $x(0) = 0$, $\frac{dt(0)}{dx} = 0$.

6)
$$\frac{d^2t}{dx^2} + \frac{dt}{dx} = t^2 + 2t$$
, $x(0) = 4$, $\frac{dt(0)}{dx} = -2$.

7)
$$\frac{d^2t}{dx^2} - \frac{dt}{dx} = te^t$$
, $x(0) = 0$, $\frac{dt(0)}{dx} = 0$.

8)
$$\frac{d^2t}{dx^2} - \frac{dt}{dx} + 2\sin t = 0$$
, $x(0) = 1$, $\frac{dt(0)}{dx} = 2$.

9)
$$\frac{d^2t}{dx^2} - 3\frac{dt}{dx} + 2x = 0$$
, $x(0) = 1$, $\frac{dt(0)}{dx} = 0$.

10)
$$\frac{d^2t}{dx^2} - 5\frac{dt}{dx} + 6x = 0$$
, $x(0) = 1$, $\frac{dt(0)}{dx} = 0$.

11)
$$\frac{d^2t}{dx^2} - 2\frac{dt}{dx} + 2x = 1$$
, $x(0) = 0$, $\frac{dt(0)}{dx} = 0$.

12)
$$\frac{d^2t}{dx^2} - \frac{dt}{dx} + x = 2\sin t + 3\cos t$$
, $x(0) = 2$, $\frac{dt(0)}{dx} = -3$.

13)
$$\frac{d^2t}{dx^2} + 3\frac{dt}{dx} + 2x = 4t$$
, $x(0) = 0$, $\frac{dt(0)}{dx} = 0$.

14)
$$\frac{d^2t}{dx^2} - 3\frac{dt}{dx} + 2x = 0$$
, $x(0) = 1$, $\frac{dt(0)}{dx} = 0$.

15)
$$\frac{d^2t}{dx^2} + 3\frac{dt}{dx} + 2x = 1 + t + t^2$$
, $x(0) = 0$, $\frac{dt(0)}{dx} = 1$.

16)
$$\frac{d^2t}{dx^2} + \frac{dt}{dx} = 1$$
, $x(0) = 0$, $\frac{dt(0)}{dx} = 0$, $\frac{d^2t(0)}{dx^2} = 0$.

17)
$$\frac{d^2t}{dx^2} + 4\frac{dt}{dx} = 1$$
, $x(0) = 0$, $\frac{dt(0)}{dx} = 0$, $\frac{d^2t(0)}{dx^2} = 0$.

18)
$$\frac{d^3t}{dx^3} + \frac{d^2t}{dx^2} = \sin t$$
, $x(0) = 1$, $\frac{dt(0)}{dx} = 1$, $\frac{d^2t(0)}{dx^2} = 0$.

19)
$$\frac{d^3t}{dx^3} - 2\frac{d^2t}{dx^2} + \frac{dt}{dx} = 4$$
, $x(0) = 1$, $\frac{dt(0)}{dx} = 2$, $\frac{d^2t(0)}{dx^2} = -2$.

20)
$$\frac{d^2t}{dx^2} + 4\frac{dt}{dx} = e^t$$
, $x(0) = x_0$, $\frac{dt(0)}{dx} = \frac{dt}{dx_0}$. Найти общее решение.

21)
$$\frac{d^2x}{dy^2} + \frac{dx}{dy} = 2e^x$$
, $y(0) = 3$, $\frac{dx(0)}{dy} = 0$.

22)
$$\frac{d^2x}{dy^2} + \frac{dx}{dy} = x^3 + 6x$$
, $y(0) = 0$, $\frac{dx(0)}{dy} = 0$.

23)
$$\frac{d^2x}{dy^2} + \frac{dx}{dy} = \sin 2x$$
, $y(0) = 0$, $\frac{dx(0)}{dy} = 0$.

24)
$$\frac{d^2x}{dy^2} + \frac{dx}{dy} = x^2 + 6x$$
, $y(0) = 0$, $\frac{dx(0)}{dy} = 0$.

25)
$$\frac{d^2x}{dy^2} + \frac{dx}{dy} = \sin 4x$$
, $y(0) = 0$, $\frac{dx(0)}{dy} = 0$.

26)
$$\frac{d^2x}{dy^2} + 2\frac{dx}{dy} + 2y = 1$$
, $y(0) = 0$, $\frac{dx(0)}{dy} = 0$.

27)
$$\frac{d^2x}{dy^2} - 2\frac{dx}{dy} + 5y = 1 - x$$
, $y(0) = 0$, $\frac{dx(0)}{dy} = 0$.

28)
$$\frac{d^2x}{dy^2} - \frac{dx}{dy} + y = e^{-x}$$
, $y(0) = 0$, $\frac{dx(0)}{dy} = 0$.

29)
$$\frac{d^3x}{dy^3} + \frac{dx}{dy} = e^{2x}$$
, $y(0) = 0$, $\frac{dx(0)}{dy} = 0$, $\frac{d^2x(0)}{dy^2} = 0$.

30)
$$\frac{d^3x}{dy^3} - \frac{dx}{dy} - 3(2 - x^2) = 0$$
, $y(0) = 1$, $\frac{dx(0)}{dy} = 1$, $\frac{d^2x(0)}{dy^2} = 1$.

II. Методом операционного исчисления найти частное решение системы дифференциальных уравнений, удовлетворяющее заданным начальным условиям [2].

1)
$$\begin{cases} \frac{dx}{dy} + y = 0, \\ \frac{dy}{dx} + x = 0; \end{cases} x(0) = 2; y(0) = 0.$$

2)
$$\begin{cases} \frac{dx}{dy} = x - y, \\ \frac{dy}{dx} = x + y; \end{cases} x(0) = 1; y(0) = 0.$$

3)
$$\begin{cases} \frac{dx}{dy} + 3x + y = 0, \\ \frac{dy}{dx} - x + y = 0; \end{cases} x(0) = 1; y(0) = 1.$$

4)
$$\begin{cases} \frac{dx}{dy} - 4x + y = 0, \\ \frac{dy}{dx} - x - 2y = 0; \end{cases} x(0) = 0; y(0) = 1.$$

5)
$$\begin{cases} \frac{dy}{dz} = 3z - y, \\ \frac{dz}{dy} = y + z; \end{cases} y(0) = 0, z(0) = 0.$$

6)
$$\begin{cases} \frac{dx}{dy} = -2x - 2y - 4z, \\ \frac{dy}{dx} = -2x + y - 2z, & x(0) = 1, y(0) = 1, z(0) = 1. \\ \frac{dz}{dy} = 5x + 2y + 7z; \end{cases}$$

7)
$$\begin{cases} \frac{dx}{dy} + 4x - y = 0, \\ \frac{dy}{dx} + 2x + y = 0; \end{cases} x(0) = 2; y(0) = 3.$$

8)
$$\begin{cases} \frac{dx}{dy} + y - z = 0, \\ \frac{dy}{dx} - z = 0, \quad x(0) = 2, \quad y(0) = \frac{1}{2}, \quad z(0) = \frac{5}{2}. \\ x + z + \frac{dz}{dy} = 0; \end{cases}$$

9)
$$\begin{cases} \frac{dx}{dy} + 7x - y = 0, \\ \frac{dy}{dx} + 2x + 5y = 0; \end{cases} x(0) = 1; y(0) = 1.$$

10)
$$\begin{cases} \frac{dx}{dy} = -x + y - z, \\ \frac{dy}{dx} = x - y + z, & x(0) = 2, y(0) = 2, z(0) = -1. \\ \frac{dz}{dy} = x + y - z; \end{cases}$$

11)
$$\begin{cases} \frac{dx}{dy} - x + 2y = 3, \\ 3\frac{dx}{dy} + \frac{dy}{dx} - 4x + 2y = 0; \end{cases} x(0) = 0; y(0) = 0.$$

12)
$$\begin{cases} \frac{dx}{dy} = y - z, \\ \frac{dy}{dx} = x + y, \ x(0) = 1, \ y(0) = 2, \ z(0) = 3. \\ \frac{dz}{dy} = x + z; \end{cases}$$

13)
$$\begin{cases} \frac{dx}{dy} + \frac{dy}{dx} = 0, \\ \frac{dy}{dx} + x - 2y = 0; \end{cases} x(0) = 1; y(0) = -1.$$

14)
$$\begin{cases} \frac{dx}{dy} + y = 0, \\ \frac{dy}{dx} - 2x - 2y = 0; \end{cases} x(0) = 1; y(0) = 1.$$

15)
$$\begin{cases} 2\frac{dx}{dy} + y = 0, \\ \frac{dx}{dy} + 3\frac{dy}{dx} + y = 3 - 7e^{t}; \end{cases} x(0) = 3; y(0) = 1.$$

16)
$$\begin{cases} \frac{dx}{dy} - 3\frac{dy}{dx} + x = 0, \\ \frac{dy}{dx} - x - y = e^t; \end{cases} x(0) = 0; y(0) = 0.$$

17)
$$\begin{cases} \frac{dx}{dy} - 4y = 8\sin 2t, \\ \frac{dy}{dx} - x = -8\sin 2t; \end{cases} x(0) = -2; y(0) = 2.$$

18)
$$\begin{cases} \frac{dx}{dy} - 2x - 4y = \cos t, \\ \frac{dy}{dx} + x + 2y = \sin t; \end{cases} x(0) = 0; y(0) = 0.$$

19)
$$\begin{cases} \frac{d^2x}{dy^2} + y = 1, \\ \frac{d^2y}{dx^2} + x = 0; \end{cases}$$
 при $t_0 = 0$, $x(0) = \frac{dx(0)}{dy} = 0$; $y(0) = \frac{dy}{dx(0)} = 0$.

III. Найти оригинал по данному его изображению методом разложения на простейшие дроби [2].

1)
$$\frac{p-1}{p^2+3p}$$
;

2)
$$\frac{p^2+1}{p^2(p-1)^2}$$
;

3)
$$\frac{5p+3}{(p-1)(p^2+2p+5)}$$
;

4)
$$\frac{p}{(p^2+1)(p^2+4)}$$
;

5)
$$\frac{p^2+3p+4}{p(p-1)(p-2)}$$
;

6)
$$\frac{p^2}{(p^2+4)(p^2+9)}$$
;

7)
$$\frac{p^2-p+2}{p^3-p^2-6p}$$
;

8)
$$\frac{4p^2-6p+4}{p(p-1)^2}$$
;

9)
$$\frac{1}{p+2p^2+p^3}$$
.

IV. Пользуясь теоремой умножения, найти оригиналы, соответствующие следующим изображениям [2]:

1)
$$\frac{p}{(p-1)(p^2+4)}$$
;

2)
$$\frac{1}{p^2(p-1)}$$
;

3)
$$\frac{1}{(p+1)(p+2)^2}$$
;

4)
$$\frac{p^2}{(p^2+4)(p^2+9)}$$
;

5)
$$\frac{1}{(p^2-6p+13)(p^2-6p+10)}$$
;

6)
$$\frac{1}{(p-1)^2(p-2)^3}$$
;

7)
$$\frac{p}{\left(p^4-1\right)}$$
;

8)
$$\frac{p^2}{(p^2+1)^2}$$
;

9)
$$\frac{1}{(p+1)(p^2-4)}$$
.

V. Найти оригиналы, используя одну из теорем обращения [2].

1)
$$\frac{1}{p^2(p^2-1)}$$
;

2)
$$\frac{1}{p(p^2+1)}$$
;

3)
$$\frac{p}{(p^2+1)(p^2+9)}$$
;

4)
$$\frac{1}{(p-1)^2(p^2+1)}$$
;

5)
$$\frac{1}{(p^2+1)^3}$$
;

6)
$$\frac{p}{(p^2+1)^2}$$
;

7)
$$\frac{1}{(p-1)^3(p^3+1)}$$
;

8)
$$\frac{4-p-p^2}{p^3-p^2}$$
;

9)
$$\frac{1}{p^4 - 6p^3 + 11p^2 - 6p}$$
.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Суть метода операционного исчисления.
- 2. Определение оригинала.
- 3. Определение изображения.
- 4. Теорема существования.
- 5. Теорема единственности.
- 6. Свойства оригиналов.
- 7. Теорема линейности (свойство линейности изображений).
- 8. Теорема подобия.
- 9. Теорема смещения.
- 10. Дифференцирование оригинала (изображение производной).
- 11. Интегрирование оригинала (изображение интеграла).
- 12. Дифференцирование изображения.
- 13. Интегрирование изображения.
- 14. Теорема запаздывания.
- 15. Теорема умножения.
- 16. Формула Дюамеля.
- 17. Изображение периодических функций.
- 18. Единичная функция Хевисайда и ее применение к аналитическому описанию разрывных функций. Изображение функции Хевисайла.
- 19. Изображение по Карсону–Хевисайду и его связь с изображением по Лапласу.
- 20. Отыскание оригинала. Метод разложения на простейшие дроби.
 - 21. Отыскание оригинала. Первая теорема разложения.
 - 22. Отыскание оригинала. Вторая теорема разложения.
 - 23. Формула обращения Меллина. Условия ее применения.
- 24. Решение линейных дифференциальных уравнений операционным методом.
- 25. Решение систем линейных дифференциальных уравнений операционным методом.
 - 26. Свертка функций и ее свойства.

- 27. Применение формулы Дюамеля для решения дифференциальных уравнений.
- 28. Решение дифференциальных уравнений с графически заданной правой частью.
- 29. Дельта-функция, ее свойства и ее изображение. Обобщенные производные разрывных функций.
- 30. Теорема о вычислении некоторых несобственных интегралов.
- 31. Решение интегральных уравнений специального вида операторным методом.
 - 32. Изображение функций Бесселя и Кельвина.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
1. ОБЩИЕ ПОНЯТИЯ	4
2. СВОЙСТВА ПРЕОБРАЗОВАНИЯ ЛАПЛАСА	12
2.1. Свойство линейности	12
2.2. Изображение производной	12
2.3. Интегрирование оригинала функции	14
3. ТЕОРЕМЫ ПОДСТАНОВКИ	15
3.1. Теорема подобия	15
3.2. Теорема смещения	17
3.3. Теорема запаздывания	18
4. ОБРАТНОЕ ПРЕОБРАЗОВАНИЕ ЛАПЛАСА	19
4.1. Основные правила преобразования Лапласа	19
4.1.1. Дифференцирование изображения	19
4.1.2. Интегрирование изображения	20
4.1.3. Умножение изображений	20
4.1.4. Теорема Эфроса	20
5. МЕТОД РЕШЕНИЯ ПРОСТЕЙШИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ	22
6. ГРАНИЧНЫЕ УСЛОВИЯ ПЕРВОГО РОДА	38
6.1. Полуограниченное тело	38
6.2. Неограниченная пластина	46
7. ГРАНИЧНЫЕ УСЛОВИЯ ВТОРОГО РОДА	54
7.1. Полуограниченное тело	54
ЗАКЛЮЧЕНИЕ	56
СПИСОК ЛИТЕРАТУРЫ	57
ПРИЛОЖЕНИЕ А	58
ПРИЛОЖЕНИЕ Б	69
КОНТРОЛЬНЫЕ ВОПРОСЫ	78

Учебное электронное издание

БАЛАШОВ Алексей Александрович

ОСНОВНЫЕ ПОНЯТИЯ ПРЕОБРАЗОВАНИЯ ЛАПЛАСА

Учебное пособие

Редактор Л. В. Комбарова Графический и мультимедийный дизайнер Т. Ю. Зотова Обложка, упаковка, тиражирование Л. В. Комбаровой

ISBN 978-5-8265-2905-8

Подписано к использованию 19.05.2025. Тираж 50 шт. Заказ № 64

Издательский центр ФГБОУ ВО «ТГТУ» 392000, г. Тамбов, ул. Советская, д. 106, к. 14 Тел./факс (4752) 63-81-08. E-mail: izdatelstvo@tstu.ru