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Abstract: On the basis of the first-order solid plate theory, proposed in earlier au-
thors’ articles, two assumed stress-strain ANS quadrilateral four-node solid plate ele-
ments are developed. This paper generalizes the conventional assumed stress solid
plate/shell finite element formulation because transverse shear strains are distributed in
the thickness direction according to the linear law. Both quadrilateral ANS solid plate
elements developed are based on the unified technique that allows assessing their ad-
vantages and disadvantages. It is worth noting that element stiffness matrices of elabo-
rated quadrilaterals including a displacement-based ANS quadrilateral four-node ele-
ment have six zero eigenvalues as required for satisfaction of the general rigid-body
motion representation.

1 Introduction

A robust finite element formulation pioneered by Pian [1] is the hybrid stress
method. In this formulation the displacements on the element boundary are assumed to
provide displacement compatibility between elements, whereas internal stresses are
assumed so as to satisfy the differential equilibrium equations. Pian’s work was origi-
nally based upon the principle of the stationary complementary energy. Later, an alter-
native assumed stress version was proposed by applying the Hellinger-Reissner varia-
tional principle that simplifies the evaluation of the element stiffness matrix [2]. In the
eighties the assumed stress-strain [3] and assumed strain [4] finite element formulations
were also developed. The first formulation is based on the Hu-Washizu variational prin-
ciple while the second one departs from its modified version, in which only displace-
ments and strains are chosen as fundamental unknowns.

In the last two decades, a considerable work has been carried out on three-
dimensional continuum-based finite elements that can handle thin plate/shell analysis
satisfactorily. These elements are typically defined by two layers of nodes at the bottom
and top surfaces of the shell with three displacement degrees of freedom per node and
known as solid-shell elements [5]. The development of solid-shell elements is not
straightforward. In order to construct solid elements with high computational character-
istics severe deficiencies such as shear, membrane, trapezoidal and thickness locking
must be overcome. Currently, it is well known that for the best computational efficiency
of solid quadrilaterals for the thin plate/shell analysis the assumed natural strain (ANS)
method has to be employed. This method was originally proposed by Hughes and Tez-
duyar [6] for the displacement-based plate formulation and further has been used for the
development of the assumed stress solid shell formulation [7, 8].

In this paper the ANS method is also applied to improve the performance of two
assumed stress-strain solid plate quadrilaterals employing a unified technique. This al-
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lows one to assess their advantages and disadvantages and to compare with the corre-
sponding displacement-based ANS solid plate element. It is remarkable that both as-
sumed stress-strain ANS quadrilaterals exhibit an excellent performance because no
expensive numerical procedures of the matrix inversion compared to assumed strain and
assumed stress elements are needed. All can be carried out analytically. In order to
avoid thickness locking, the simplest and robust remedy of Lee et al. [9] was used. Al-
though a more general approach of Sze at al. [8], based on the ad hoc modified constitu-
tive stiffness matrix, can be also applied.

2 Strain-displacement equations of first-order solid plate theory

Consider a plate of uniform thickness 4. The plate may be defined as a 3D body
bounded by two planes S~ and S*, located at the distances 8~ and 8" measured with
respect to the reference plane SR and the edge boundary cylindrical surface Q0 that is
perpendicular to the reference plane (Fig. 1). Let the reference plane SR be referred to

the Cartesian coordinate system x! and x?. The x° —axis is oriented along the normal
direction.
The position vector x of the arbitrarily point of the plate body can be expressed as

x=N"x +N'x", (1a)
xt=xR +57e;, xR = x%ey, (1b)

—_l + 3 +_l 3 g
N_h(a x), N—h(x 6), (1¢)

where xR (xl, x? ) is the position vector of the reference plane; x* are the position

vectors of the face planes; N * (x3) are the linear through-thickness shape functions of

the plate.

Fig. 1 Geometry of plate
The first-order solid plate theory is based on the linear approximation of displace-
ments in the thickness direction (Timoshenko-Mindlin kinematics [10]):
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x=Nx +N*x", (2a)
xt=xF +ut, (2b)
ut = ul»iei, (2¢)

where x and x* are the position vectors of points in the plate body in its current con-

figuration; ut (xl, x2) are the displacement vectors of the face planes; e = e; are the

orthonormal base vectors in the Cartesian coordinate space.
The components of the strain tensor can be written as

28 =X X ;=X "X j, €)

where the abbreviation ( )[ implies the partial derivatives with respect to coordinates

x' . Here and in the following developments indices i and j take the values 1, 2 and 3,
while Greek indices o and [ take the values 1 and 2.

Substituting position vectors from Egs. (1) and (2) into 3D strain-displacement re-
lationships (3) and retaining only geometrically linear terms, one obtains

SaB = L78;_I3 +LM83/[ﬁ +L+8&B, (4)
€3 =N eq3 +N'g43, €33 =833,
L‘:N‘(N‘—N*) ., IM=4N"N*, L+:N+(N+—N_) , (5)

where L (x3) and IM (x3 ) are the quadratic through-thickness shape functions of the

plate; Siﬁ and 824[3 are the in-plane strains of face and middle planes, correspondingly;

+ .
€3 are the transverse shear strains of face planes defined as

2egp =uly ep+ulyeq = upptup,  (I=— M, +), (6a)
2eg3 =Prey +Uy €3 =Py +i5q, (6b)
&3 =P-e3 =P;, (6¢)

_l + _u M_l— + Al M _ M.
[i—h(u u ), u —2(u +u ), p=pBe, u =ue. (6d)

Note that relationships (6a) and (6b) are valid because a simple formula
X =€y (7
holds.

The strain terms (4) quadratic in x~ can be neglected because of their minor sig-
nificance in most plate problems. So, one can write

3

SOLB = NﬁS&B + N+8;B, (8)

a3 =Neg3 +N'egs, £33 = &3,
Strain-displacement equations (8) were used extensively for the development of robust
solid plate/shell elements [11-13]. A close finite element formulation, in which in-plane
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and transverse shear strains depend linearly on the thickness coordinate, was proposed
by Lee et al. [9].

It is important that transverse components of the strain tensor (6b) and (6¢) satisfy
the following coupling conditions:

2(833 - 8&3) = heg3 - €

A proof of this statement is obvious and was given for the finite deformation plate the-
ory by Kulikov and Plotnikova [13].

3 Displacement-based ANS quadrilateral solid plate element
For the isoparametric quadrilateral four-node solid plate element the position vec-

tor in the initial configuration and the displacement vector are approximated according
to the standard C° interpolation

R R
XU =) Nx;, (10)

r

T T
XR=|: Iy 0} , x}:[ 152 0} (11)
and

u=> Nu,, (12)

r
_—+—+—+T _—+—+—+T 13
UW=\upup Uy Uy Uz Uz |, W = U Uy Uy Uy U3 U3 | (13)

where u, are the displacement vectors of the element nodes (Fig. 2); N, (é’;l, F,z) are

the bilinear shape functions of the element; £” are the natural coordinates; the index

runs from 1 to 4 and denotes a number of nodes.

In order to avoid shear locking of the displacement-based formulation, we employ
the ANS method [6] using its non-conventional treatment (compared to [7, 8]) because
herein transverse shear strains of face planes (6b) have to be interpolated

€3 = f%%sa (14)

i = (1-€7)éfs (B) + (148235 (D) (13)

2

x A
p g
A a, P,
a,
I\ B C
x® B gl
€ —,
» X4 »
e, xI”

Fig.2 Quadrilateral plate element
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~+ . . .
where €3 are the covariant transverse shear components of the strain tensor in the con-

travariant basis a%, e given by a standard relation a,, P = 6% , that is,

o =theg, a% =g, (16)

(1-87)(x§ -5 ) . (17)

1 1
glzxtz, fl :——tl, fz :——tz, fz :_tl'

Here, A =detJ denotes the Jacobian, i.e., a determinant of the transformation matrix
J= [IEJ . These strains are evaluated at the sampling points A, B, C and D, located at

the center of each edge, as

2813(}3)— ( - X3 )(u 3~ Ug3 +"§4—"&4)+%(u3i4—”§3) , (18)
2813(D)— ( X=X ) Uy — g+l — “a2)+%(“3i1—“_2) ,
2823(A)_ (xz —x?)( Ugp —Ugn +llgs — a3)+%(”§2—ﬁ3) ;

_ _ 1
2823(C)‘ ( x4)(“&'1—%1+”§4—ua4)+5(u3il—”3i4) :

Substituting displacement interpolations (12) in strain-displacement relationships
(6a) and (6¢), and taking into account Eqgs. (14), (15) and (18), one obtains

E = BU, (19a)

T
B=[B, B, By B,], U:[ulT ul uf uﬂ , (19b)

T
- o+ =+ — + — + + =
E:[Sn €11 €20 €22 2812 2€1p 2813 2813 2ep3 283 833] .

As usual in the finite element literature B, denote the matrices together constituting the

strain-displacement transformation matrix B of order 11x24, which may be evaluated
in the standard manner.
A variational equation for the displacement-based finite element formulation can
be written as
11

j j (8ETDE ~su'P )Ad&_,ldé,z - Uj sul H Lds=0, (20a)
—1-1 re!

T T
P=l-prpl-paps-pipi| o wr=|ugwu wws i), Q0b)
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T
- + - + - +

II[‘: H,, Hy, Hy,; Hy H3 }1V3} >

where D is the constitutive stiffness matrix of order 11x11 [14], whose components are

found in accordance with the simplest remedy of Lee et al. [9] to prevent thickness lock-
ing; ul, u and uj are the components of displacement vectors of the face planes in

the orthonormal basis e,, e, and e5, associated with the bounding curve re (Fig. 2);

HY,, HY and H3y are the components of the load resultant tensors in the same or-
thonormal basis defined as
6+
HE = J' guN*d® (z=v, tand3) . Q1)
&
Using approximations (12) and (19) into the variational equation (20) yields the
element equilibrium equations
KpU=F, (22)
where F is the force vector and K is the elemental stiffness matrix of order 24x24:

11
Kp = j j B DBAdE!dE?. (23)

-1-1
Here and in the following studies the integrals are calculated by employing a Gauss
integration scheme with 2x2 integration points except for a case of the analytical

evaluation of matrices Q and Q in the next section.

4 Assumed stress-strain ANS quadrilateral solid plate element

The assumed stress-strain finite element formulation developed is based on the
fundamental approximations of displacements (2) and displacement-dependent strains
(8) in the thickness direction. Additionally, one has to adopt the similar approximation
for the assumed displacement-independent strains:

sgg =N Egp+ N+E:;B, (24)
€S =N Ej3+NTEL;, el = Ey;.

Substituting approximations (2), (8) and (24) into the 3D Hu-Washizu variational
principle [13] and introducing stress resultants

8t 5t 5t
H(J;r[} = J. GaﬁNidx3o H:—;3 = ‘[ Ga3Nidx3, H33 = I G33dx3, (25)
& & 5
one derives
11
[ [[5E" (H-DE)+8H" (E-E)-SE"H+5u"P |Adg'dae? (26a)

-1-1

+[J] duf Hr ds =0,
reé
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- ot o=t - + - + ~ + T

E= [En Eyy Eyy Eyp 2y, 2By, 2E13 2E(3 2E)3 2E5; Ess] , (26b)
- ot = gt - gt oog- gt - gt T
H:[Hll Hyy Hy, Hy, Hyp Hyy Hi3 Hi3 Hyz Hyj H33J :

The remaining matrix notations are presented by Egs. (13), (19b) and (20b).

4.1 Consistent assumed stress-strain formulation

In order to fulfill a patch test, the assumed stress resultants are interpolated by in-
voking ideas of Pian and Sumihara [15] and Simo et al. [7]

T
H=Py¥, V¥-= [\Vv Vi l+s] > (27a)
~ O10x1 O10x1 O
Py :|:Il w1 Pyt PR Pﬁm], P ={ S I (27b)
€ £° &g
17122 T171%1 ]
448 0 nne 0 - :
0 2 . P O6i Oga Oga Ogx
i b —172 —171
oY) —27271 s 0 % 0
4478 0 HL'Ht 0 —172 “171
Pinp — —2—23%2 —2—271 pis — 0 (S 0 ne
H 0 447§ 0 unp& ] 'H 252 o 28 o [
R, ——1 7€ &
h4°g 0 Hh'g 0 0o 22 o 2@
—17272 —17271 4% &
0 4 4°E 0 5Hut 0 0 0 0 |
| Osq Os,g  Osq  Osyg |

11
= 1 1,00 1b
g* =gt -gl, &l =—|[ [e*Adglag? =2,
4a i) 3a
where I;1,q; is the identity matrix; Os, and Oy, are the zero vectors; the index s

runs from 1 to 11. Therefore, a vector of unknown stress parameters W contains 11
parameters for describing homogeneous states of stress resultants and 11 higher ap-

proximation modes. The transformation coefficients t_m[3 in (27b) denote the components

of the Jacobian matrix J evaluated at the element center, whereas the symbol a denotes
its determinant A calculated at the same point given by

i) lessd) oo
A=asbgt, a=[(xd-ad)(3-xd)-(d-d)(F-3)] @
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The purpose of introducing parameters E“ lies in the simplicity of the fundamen-

tal matrix of the assumed stress-strain method, denoted below by Q, because a useful
formula

11
j j ECAdEdE? =0 (30)
-1-1
holds. It should be remarked that approximations (27) correspond to a transformation of
the contravariant components of the stress resultant tensor in the covariant basis a, , €3

to the Cartesian components in the basis e, , e5.
The assumed displacement-independent strains are interpolated by a similar way

T
E=P®, ®=[¢, ¢y ,] . (1a)
P = |:Ill><11 PP P PJE:ml P =P, (31b)
[ 1122 2,271 ]
0 / 0 _ _
RE o L e O6x O Opa Ogy
0 e 0 252 6
14 14 12 0 2E o
. i 3 i€
208 0 15058 0 132 271
in — = — = t 0 4¢ g
PP — 15152 27,271 pls —
E 0 52 €2§ 0 P ZZ g > LTE ——

2000082 0 2020
0 2042 0 20038
L Osx Os5 Os5 05y

0o gz o e
0 0 0

where @ denotes the vector of unknown strain parameters of order 22x1, whereas
transformation coefficients fg denote the components of the Jacobian matrix J!
evaluated also at the element center defined as

H=—i', f=—i’ G=—n, H=—y. (32)
a a

The approximations (31) correspond to a transformation of the covariant components of
the displacement-independent strain tensor in the contravariant basis a%, e to its
components in the orthonormal basis e, es.

Inserting interpolations (12), (19), (27) and (31) into the mixed variational equa-
tion (26) and introducing matrix notations

11
Q- j j PL P AdE'dE?, (33a)
-1-1

11 11
Sg = [ [PEDPeAdE'as®, Ry = | [ PiBAdE'QE’, (33b)
-1-1 -1-1

the following element equilibrium equations are obtained:

Q'Y=S;®, Q®=-RyU, R ¥-=F. (34)
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Eliminating assumed stress and strain parameter vectors ¥ and ® from Eq. (34), one
finds

Here, Kgy denotes the element stiffness matrix given by

Ken = R{QTSEQ 'Ry, (36)
The fundamental matrix Q of the assumed stress-strain method can be found em-
ploying the analytical integration. Using Egs. (27b), (29) and (31b) into (33a) and inte-
grating, we obtain
9aliy1 Or1x4 Orixa O3

inp
4] Osar Qus Osa Oug
0 trs
9 Ogq1  Opq Qupg Oy
trn
0341 O34a O34 Q33

dy 0 0 0 P
inp trs 0 d22 0 0 trn ! 2 ?
Qus = Qs = 0 0 4 0] Q3 =|dip dpn b |,
b b a
0 0 0 d 21

Q , (37

where

1
daf’ = 3a8aB _;b(xbﬁ

It is seen that the matrix Q has a diagonal structure except for the submatrix Q33 .

Therefore, its inversion may be done readily, since only a submatrix Q33 has to be

inverted.

Using a link between transverse components of the displacement-dependent strain
tensor (9) and following a technique developed in paper [16], one can derive four cou-
pling conditions for the transverse components of the displacement-independent strain
tensor. These conditions imply that only 18 assumed strain parameters are independent
of 22 ones introduced in the approximation (31). In a result, the elemental stiffness ma-
trix has six, and only six, zero eigenvalues as required for satisfaction of the general
rigid-body motion representation, since 24 displacement degrees of freedom are intro-
duced.

As it pointed out previously, the evaluation of all remaining matrices including Sg
and Ry are carried out numerically employing a Gauss integration scheme. But all can
be done analytically due to a property of the strain-displacement transformation matrix,
that is,

1 ~
B=—B, 38
N (38)

where B denotes a new strain-displacement transformation matrix, whose components

already depend only on the polynomials of coordinates &1 and &2‘ The numerical ex-

amples showed that CPU time required for the formation of the global stiffness matrix
is slightly depend on a number of elements used for discretizing a plate and the numeri-
cally integrated element matrix needs about 50 % more time than the analytically inte-
grated one.
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Unfortunately, a consistent assumed stress-strain element developed is a bit stiff
when we use coarse skewed meshes in some discriminating benchmark problems. The
better performance one can achieve by employing an enhanced assumed stress-strain
element. We suppose that this unexpected effect is a result of applying mixed approxi-
mations of two different types (27) and (31) containing simultaneously both transforma-

tion coefficients t_aB and Zﬁ

4.2 Enhanced assumed stress-strain formulation

The patch test can be also fulfilled by employing for the displacement-dependent
strains instead of a consistently assumed approximation (31) the more robust approxi-
mation given by

E=P;®, (39a)
P[0 B RS B ] T BEoRp. B omP. (o
i t—]lglgz 0 t_zlt_zlgl 0 ]
0 t—llt—llgz 0 t_zlt_zlgl
) t—lzt—lzgz 0 ;22;22g1 0
PIIE“P = 0 712?12%2 0 ;22;22%1
21—111—1252 0 2;21;2251 0
0 2t_11t_12€2 0 2 tzlt—zzgl
055 Os5 Osy 055

The motivation for such kind of approximations lies in the possibility to use only trans-
formation coefficients t_(f’ , which correspond to a transformation of the contravariant

tensor components to the Cartesian ones.
Following a technique developed in the previous subsection, one derives a system
of finite element equations

KgyU=F, (40)
where
Kgy = REQTSEQ 'Ry, (41)
B 11 B B L1 5
Q= [ [PiPgAde'de’,  sp = [ [ PiDPrAdE'dE’. (42)
-1-1 -1-1

The fundamental matrix 6 can be found again in a closed form by using the ana-

lytical integration. Taking into account Egs. (27b), (29), (39b) and (42), we obtain
slightly more complex formula:

9ali101 O11xa O11xa O113

- 4] O4q Q4 Ouu Oy 3)
9 041 Ouy Qs Oy
O3q1 O3q O3y Q33
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2 2
mdy 0 mpdi, 0
2 2
0 7dy 0 mpdp
2 2
Tpdiy 0 mypdyp 0

2 2
0  mpdiy 0 mydp

inp _
Q4><4 -

Tdy 0 mpdy; 0
s _ 0 1y 0 T2din At ~trn
Q4><4 = d 0 d 0 P Q}x} - Q}x}»
2412 T4y
0 mpdiy, 0 mopdpy
where
T =T+ 2.

5 Numerical examples

The performance of the proposed quadrilateral four-node ANS solid plate ele-
ments is evaluated with several problems extracted from the literature. A listing of these
elements and the abbreviations used to identify them are contained in Table 1.

Table 1
Listing of quadrilateral four-node solid plate elements
Name Description
SPQ4ceC Solid plate quadrilateral based on the consistent assumed stress-
strain ANS formulation (section 4.1)
SPQ4c¢cE Solid plate quadrilateral based on the enhanced assumed stress-
strain ANS formulation (section 4.2)
SPQ4 Solid plate quadrilateral based on the displacement-based ANS
formulation (section 3)

5.1 Cantilever beam under tip load

A cantilever beam of the rectangular cross section is subjected to four concentrated
loads acting on the bottom and top planes of the free end. Its mechanical and geometri-
cal characteristics are given in Fig. 3. The six element mesh is used to model this prob-
lem and all elements are distorted so as to keep their widths on the centerline constant.

)Norm

The normalized transverse tip displacements of the centerline (u%vI are dis-

played in Table 2. The displacements are normalized with respect to the analytical solution
[17]. It is seen that both developed assumed stress-strain elements perform excellently.

F/4l
o, a b a b a b ")
VAVAVA [ a—

= v

O

<b a bga b a, F/4‘F/4

(=36, d=0.95,h=0.036, E=2x10°% v =0, F= 100

Fig. 3 Cantilever beam under tip load
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Normalized transverse tip displacement (uévl)

Norm

Table 2

of cantilever beam

alb SPQ4c:C SPQ4c:E SPQ4 MITC4 [17]
1 0.9931 0.9931 0.9931 0.9931
5 0.9867 0.9879 0.9867 0.9825
59 0.9817 0.9848 0.9825 0.9704

5.2 Circular plate under central load

Consider a thin circular plate subjected to a concentrated load at the center point.
The mechanical and geometrical characteristics of the plate are given in Fig. 4. The
standard meshes [6] are used to model due to symmetry only one quarter of the plate.

Fig. 5 displays transverse central midplane displacements uévl of the simply sup-
ported and clamped plates normalized with respect to the analytical solution [18], based
on the classical plate theory. Additionally, a comparison with results of Hughes and
Tezduyar [6] is presented. The predictions of SPQ4c¢E and SPQ4 elements are graphi-

cally indistinguishable from that of SPQ4ceC and T1 [6] ones, respectively, and are not
shown in Fig. 5(b).

F/4

N%=3

R

Symmetry

R=5, h=0.1, E=1.092x10° v=0.3, F=I

Fig. 4 Circular plate under central load

1.00 1.00
: :
g K
5 5
@ 2 N
g 0.99 < 0.875
N N
= E
: :
Z zZ
< —o— SPQdoEC

—o— SPQ4oeE —o— SPQ4ceC
Hughes and Tezduyar Hughes and Tezduyar
0.98 L 0.75 |
3 12 48 3 12 48

Number of elements

a)

Number of elements

b)

Fig.5 Convergence study due to mesh refinement for («) simply supported
and (b) clamped circular plates
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8 Conclusions

On the basis of the first-order solid plate theory the assumed stress-strain ANS
quadrilateral solid plate elements have been developed. Because of locking in the case
of coarse skewed meshes in several test problems in addition to the consistent assumed
stress-strain ANS formulation it has been presented the more robust one. We refer to it
as an enhanced assumed stress-strain ANS formulation. Both assumed stress-strain
quadrilaterals permit the analytical integration leading to the elemental stiffness matri-

ces because fundamental matrices Q and Q, corresponding to each finite element
formulation, possess very simple structures and their analytical inverse can be carried
out in a closed form.

It is important that element stiffness matrices of elaborated assumed stress-strain
quadrilateral four-node elements on the basis of the analytical and numerical integration
have six, and only six, zero eigenvalues as required for satisfaction of the general rigid-
body motion representation. Besides, CPU time required for the formation of the global
stiffness matrix is slightly depend on a number of elements used for discretizing a plate
and the numerically integrated element matrix needs about 50 % more time than the
analytically integrated one.
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YeThIpexyroabHbie 3J1IeMEHThI IVIACTHHBI ¢ BBeJICHHBIM pacinpeaeJeHueM
HANPsKeHUH U JeopMannii HA OCHOBE AHAJIMTHYECKOT0 U
YHCJIEHHOT0 HHTEerPUPOBAHNUSA

I''M. Kyiauxkos, C.B. [liioTHUKOBa

Kadgheopa «Ilpuknaonas mamemamuka u mexanuxay, TI'TY

KuroueBbie cjioBa u (pasbl: MeToq BBEICHHBIX JIOKAJIbHBIX Ae(hopMaruii
(ANS wmeton); cMelIaHHbIE KOHEYHO-3JIEMEHTHbIE MOJENH; YeTHIPEXY3JIOBOH Tpex-
MEPHBIH 3JIEMEHT IJIaCTHUHBI.

AHHOTauMsi: Ha OCHOBE TpeXMEepHOW TEOpHH IUIACTMH IIEPBOrO MOPSAIKA,
TIPEIOKEHHON paHee aBTOpaMH, TIOCTPOCHBI J1Ba YETHIPEXyTroNbHEIX ANS aireMeHTa ¢
BBEJCHHBIM pachpe/elicHneM HamnpspkeHud u  aedopmanwmii. Hactosmmas craths
0000111aeT OOIMENPUHATHIN MOAX0]] K MOCTPOSHUIO TPEXMEPHOTO CMEIIaHHOTO 3JIeMEHTa
JUISl aHaJIM3a TUIACTUHBI M 00O0JIOUKH, TaK KaK IOINepedHble KacaTelbHble AehopMannu
pacIpezeneHsl 1o TONIIMHE COITIACHO JIMHEHHOMY 3aKoHy. [IpeioskeHHbIe TpeXMepHbIe
ANS JJIEMECHTHI IIJIaCTUHBI OCHOBAHbI HA o61ue171 METOAOJIOTHUH, YTO ITO3BOJIACT OLICHUTH
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HUX JOCTOMHCTBA U HCJOCTATKMH. HpI/IMe‘IaTeJ'IBHO, YTO MaTpHULbI )KECTKOCTHU pa3pa60TaH—
HBIX YCTBIPEXYTOJIBHBIX DJJIEMEHTOB, BKIIHOYasd quLIpexy3n0130171 ANS osjpeMeHT Ha
OCHOBC METOJa nepeMemeHI/Iﬁ, O6J'Ia,[[a}0T HICCTBIO HYJIEBBIMH COOCTBEHHBIMHU 3Haue-
HHUAMH, UTO H606X0}II/IMO JJId IPEACTABJICHUA ABUKCHUA DJICMEHTA KaK TBEpAOTO TCia.

Viereckige Elemente der Platte mit der eingefiihrten Einteilung der
Spannungen und der Entstellungen auf Grund der analytischen und
numerischen Integration

Zusammenfassung: Auf Grund der dreidimensionalen Theorie der Platten der
ersten Ordnung, die frilher von den Autoren angeboten ist, sind zwei viereckige ANS-
Elemente mit der eingefiihrten Einteilung der Spannungen und der Entstellungen
aufgebaut. Der vorliegende Artikel fasst das allgemeingiiltige Herangehen zur
Konstruktion des dreidimensionalen gemischten Elementes fiir die Analyse der Platte
und die Hiille zusammen, da die querlaufenden Tangenten der Entstellung nach der
Dicke laut des linearen Gesetzes verteilt sind. Die angebotenen dreidimensional ANS
sind die Elemente der Platte auf der gemeinen Methodologie gegriindet, dal3 ihre
Vorteile und Nachteile zu schitzen erlaubt. Es ist bemerkenswert, dal die
Hartematrizen der entwickelten viereckigen Elemente, einschlieBlich das viernoddsen
ANS-Element aufgrund der Umstellungsmethode, tiber sechs Null-eigenen
Bedeutungen haben, was fiir die Darstellung der Bewegung des Elementes als des festen
Korpers notwendig ist.

Eléments quadrangles de la plaquette avec la répartition introduite des
tensions et des déformations a la base de I’intégration analytique et
numérique

Résumé: A la base de la théorie des plaquettes tridimensionnelles de premiére
ordre proposée par les auteurs auparavant, sont construits deux éléments quadrangles
ANS avec la répartition introduite des tensions et des déformations. Le présent article
généralise une approche admise par tous envers la construction d’un élément mixte
tridimensionnel pour I’analyse de la plaquette et de D’enveloppe puisque les
déformations transversales et tangentielles sont réparties par 1’épaisseur selon la loi
linéaire. Les éléments ANS de la plaquette proposés sont fondés sur la méthode
commune ce qui permet d’évaluer leurs avantages et leurs défauts. Il est important que
les matrices de la solidité des éléments quadrangles élaborés y compris 1’é1ément ANS a
quatre noeuds possédent six significations propres «zéro» ce qui est nécessaire pour la
présentation du mouvement d’un élément comme corp solide.
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