CBAPKA METAAAB

◆ Издательство ТГТУ ◆

Министерство образования и науки Российской Федерации

ГОУ ВПО "Тамбовский государственный технический университет"

СВАРКА МЕТАЛЛОВ

Лабораторные работы для студентов 1-4 курсов специальностей 240801, 260601, 151001, 210201, 110301, 110302, 270102 всех форм обучения

Издание восьмое

Тамбов Издательство ТГТУ 2009 УДК 621.791.052(075) ББК К641я73-5 С24

Рецензент

Заслуженный деятель науки РФ, доктор физико-математических наук **Ю.И. Головин**

Составители:

Л.Н. Тялина, Н.В. Федорова

С24 Сварка металлов : лабораторные работы. 8-е изд. / сост. : Л.Н. Тялина, Н.В. Федорова. — Тамбов : Изд-во Тамб. гос. техн. ун-та, 2009. — 36 с. — 100 экз.

Изложена методика проведения лабораторных работ по изучению различных видов электросварки, оценке качества сварного шва и металлографической структуры околошовной зоны.

Предназначены для студентов 1-4 курсов специальностей 240801, 260601, 151001, 210201, 110301, 110302, 270102 всех форм обучения.

УДК 621.791.052(075) ББК К641я73-5

© ГОУ ВПО "Тамбовский государственный технический университет" (ТГТУ), 2009

Учебное издание

СВАРКА МЕТАЛЛОВ

Лабораторные работы

Издание восьмое

Составители: **Тялина** Людмила Николаевна, **Федорова** Наталья Васильевна

Редактор З.Г. Чернова

Инженер по компьютерному макетированию М.Н. Рыжкова

Подписано к печати 09.09.2009. Формат $60 \times 84/16$. 2,09 усл. печ. л. Тираж 100 экз. Заказ № 339

Издательско-полиграфический центр Тамбовского государственного технического университета 392032, Тамбов, Советская, 106, к. 14

Лабораторная работа 1

РУЧНАЯ ДУГОВАЯ СВАРКА

Цель работы: изучить оборудование сварочного поста, освоить методику подбора режимов сварки, исследовать технологические свойства электродов, снять внешнюю характеристику источника тока.

Оборудование, приборы, инструменты, материалы: сварочный пост переменного тока с электроизмерительными приборами (амперметром, вольтметром), весы циферблатные с гирями, секундомер, линейка, электроды, стальные пластины для наплавки.

Общие методические указания

Ручная дуговая сварка (РДС) относится к термическому классу. Источником тепла служит электрическая дуга, возникающая между электродом и свариваемым изделием при протекании постоянного или переменного тока.

При ручной дуговой сварке на стабильность горения дуги, качество наплавки или сварного шва, на производительность процесса влияет ряд факторов, важнейшие из которых:

- 1) правильный подбор и расчет основных параметров сварки;
- 2) правильный выбор источника питания (переменного, постоянного тока);
- 3) технологические свойства электродов.

Для питания сварочной дуги применяют источники переменного и постоянного тока. Источниками питания дуги переменного тока при ручной дуговой сварке являются сварочные трансформаторы с увеличенным магнитным рассеянием и подвижными обмотками типа T_{\blacksquare} , TCK, TD, схема которых показана на рис. 1.

Сердечник трансформатора 1 стержневого типа, катушки первичной обмотки 2 неподвижны, а катушки вторичной обмотки 3 перемещаются вверх и вниз вручную с помощью винта и рукоятки, расположенной на крышке кожуха трансформатора.

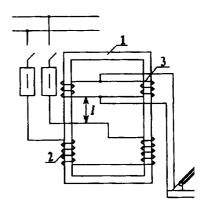


Рис. 1. Конструктивная схема сварочного трансформатора

Сварочный ток регулируется изменением расстояния между первичной и вторичной обмотками. При сближении обмоток магнитный поток рассеяния (часть основного магнитного потока, частично замыкающегося по воздушному зазору между обмотками) и индуктивное сопротивление уменьшаются, а сварочный ток увеличивается. Минимальный сварочный ток соответствует наибольшему расстоянию между обмотками.

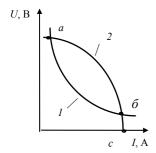


Рис. 2. Соотношение внешней характеристики тока и статической характеристики дуги

Свойства источника тока определяются его внешней характеристикой, представляющей зависимость напряжения на зажимах источника от тока в сварочной цепи U = f(I). Устойчивость горения дуги зависит от соотношения форм внешней характеристики источника и статической характеристики дуги. Для ручной дуговой сварки, когда характеристика дуги жесткая (рис. 2, кривая I), внешняя характеристика источника питания должна быть крутопадающей (кривая I). Кроме того, при крутопадающей характеристике облегчается зажигание дуги за счет повышенного напряжения холостого хода и ограничивается ток короткого замыкания.

Режим сварки один из основных элементов технологического процесса, который определяет качество и производительность сварки. При РДС основными параметрами режима являются диаметр электрода D_9 в мм, сварочный ток $I_{\rm CB}$ в амперах, напряжение на дуге $U_{\rm Z}$ в вольтах и скорость сварки $V_{\rm CB}$ в м/ч.

Определение режима сварки начинают с выбора диаметра электрода, его типа и марки. Диаметр электрода D_9 выбирается в зависимости от толщины свариваемого металла S (табл. 1) при сварке стыковых соединений и от катета шва h (табл. 2) при сварке угловых и тавровых соединений.

1. Значения диаметра электрода в зависимости от толщины свариваемых деталей

Толщина де- талей S, мм	1,5	3	4 8	9 12	13 15	16 20
Диаметр электрода D_{3} , мм	1,6	3	4	4-5	5	5 6

2. ЗНАЧЕНИЯ ДИАМЕТРА ЭЛЕКТРОДА В ЗАВИСИМОСТИ ОТ КАТЕТА ШВА

Катет шва h, мм	3	4 5	6 9
Диаметр электрода D_3 , мм	3	4	5

Марку электрода выбирают в зависимости от химического состава свариваемого металла. Покрытие электрода со шлакообразующей основой на базе карбонатов кальция или магния и плавикового шпата называется основным. Основные покрытия пригодны для сварки и углеродистых, и легированных сталей. Наиболее известные марки электродов этой группы — УОНИИ-13/45, АНО-7, АНО-8. Наплавленный ими металл обладает высокой ударной вязкостью при отрицательных температурах.

Покрытие со шлакообразующей основой на базе рутила (TiO₂) называют рутиловым, которое является наиболее распространенным в нашей стране. Широко используют электроды

марок МР-3, ОЗС-4, АНО-4 из-за высоких механических свойств швов и хороших сварочно-технологических характеристик.

При выборе типа электрода следует руководствоваться ГОСТ 9467–75. В нем предусмотрено девять типов электродов: Э38, Э42, Э46, Э46А, Э50, Э50А, Э55, Э60. Их применяют для сварки углеродистых и низколегированных сталей с временным сопротивлением разрыву до 600 МПа. Для сварки легированных сталей с временным сопротивлением свыше 600 МПа используют электроды Э70, Э150. В обозначении типа электрода указаны буква Э (электрод) и цифра, показывающая минимальное временное сопротивление разрыву металла шва или наплавленного металла в кгс/мм². Буква А после цифрового обозначения электродов указывает на повышенные пластичность и вязкость металла шва.

Тип электрода выбирают таким образом, чтобы прочность металла шва и прочность основного металла были примерно равны. Например, если у основного металла $\Box \Box \sigma_{\text{в}} = 480$ МПа, то следует выбирать электрод типа 350 или 350А.

Сварочный ток в зависимости от диаметра электрода определяют по формуле

$$I_{\rm CB} = k D_{\rm o} , A, \qquad (1)$$

где $D_{\scriptscriptstyle 9}$ – диаметр электрода, мм; k – коэффициент, зависящий от диаметра электрода и типа покрытия.

3. Значения опытного коэффициента в зависимости от диаметра электрода

Диаметр электро- да D_3 , мм	2	3	4	5	6
Опытный коэффициент, k	25 30	30 45	35 50	405	456 0

При сварке вертикальных швов сварочный ток уменьшается на 10 %, потолочных — на 20 % против расчетного.

Напряжение на дуге определяют по формуле

$$U_{\pi} = \alpha + \beta L_{\pi} \,, \tag{2}$$

где α — падение напряжения на электроде (α = 10 ... 12 В — для стальных электродов, α = 35 ... 38 В — для угольных электродов); β = 2 В/мм — падение напряжения на 1 мм дуги; $L_{\rm д}$ — длина дуги, $L_{\rm д}$ = 0,5(D + 2), мм. Для наиболее широко применяемых электродов в среднем $U_{\rm д}$ составляет 25 ... 28 В.

Расплавление металла электрода характеризуется коэффициентом расплавления $\alpha_{\rm p}$, который показывает, какая масса металла электрода при силе тока в один ампер расплавится за один час горения дуги:

$$\alpha_{\rm p} = \frac{G_{\rm p}}{I_{\rm cR} t}, \quad \Gamma/A \cdot \Box \Psi,$$
(3)

где $G_{\rm p}$ – вес расплавленного металла, г; $I_{\rm cB}$ – сила сварочного тока, А; t – время горения дуги, ч. Не весь расплавленный металл электрода переносится в шов. Часть его теряется на разбрызгивание, испарение и угар. Поэтому производительность процесса сварки определяют, исходя из коэффициента наплавки $\alpha_{\rm f}$, который меньше коэффициента расплавления на величину потерь электродного металла,

$$\alpha_{\rm H} = \frac{G_{\rm H}}{I_{\rm CB}t}, \quad \Gamma/A \cdot \Psi, \tag{4}$$

где $G_{\rm H}$ — вес наплавленного металла, г. Коэффициент потерь

$$\Psi = \frac{G_{\rm p} - G_{\rm H}}{G_{\rm p}} \cdot 100 \% \,. \tag{5}$$

Значения рассмотренных коэффициентов зависят от марок электродов, рода и полярности тока и составляют $\alpha_p = 7 \dots 13 \text{ г/A} \cdot \text{ч}; \ \alpha_H = 6 \dots 12,5 \text{ г/A} \cdot \text{ч}; \ \psi = 5 \dots 25 \%.$

Скорость сварки определяют из выражения

$$V_{\rm CB} = \frac{\alpha_{\rm H} I_{\rm CB}}{\gamma F_{\rm um}}, \quad M/\Psi, \tag{6}$$

где $V_{\rm cB}$ — скорость сварки, м/ч; $\alpha_{\rm H}$ — коэффициент наплавки, г/А · ч; γ — плотность металла, г/мм 3 (для стали γ = 7,85 \square · 10^{-3} г/мм 3); $F_{\rm HM}$ — площадь сечения наплавленного металла шва, представляющая сумму элементарных геометрических фигур, составляющих сечение шва, мм 2 . Приближенно площадь поперечного сечения шва считается равной площади равностороннего треугольника с углом раскрытия кромок $60^{\circ}\square$.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Изучить оборудование сварочного поста.
- 2. Изучить устройство и принцип работы источника питания электрической дуги.
- 3. Снять внешнюю характеристику источника тока. Чтобы построить внешнюю характеристику, необходимо получить три характерные точки a, δ , c (рис. 2), которые соответствуют режимам холостого хода, рабочему режиму, режиму короткого замыкания. Для получения точки a необходимо при включенном источнике питания и разомкнутой цепи снять показания амперметра и вольтметра. Для получения точки c необходимо сварочную цепь замкнуть накоротко и определить ток короткого замыкания по амперметру. Для получения точки δ необходимо в процессе наплавки снять показания амперметра и вольтметра. Результаты измерений занести в табл. 4 и по этим данным построить внешнюю характеристику источника питания (рис. 3).

4. ЭКСПЕРИМЕН- U, В ТАЛЬНЫЕ ДАННЫЕ

40 –

30 –

20 –

10 -

100 200 300

I, A

Рис. 3. Внешняя характеристика источника тока

Режим работы		зания
	I, A	U, B
Холостой ход		
Устойчивое горение дуги		
Короткое замыкание		

5. ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА ПАРАМЕТРОВ РЕЖИМА **ручной дуговой сварки**

№ вари- анта	Марка стали	Временное сопротивление разрыву $\sigma_{_{\rm B}}$, МПа	Толщи- на металла <i>S</i> , мм	Вид соеди- нения	Положение шва в пространстве
2 3 4 5 6 7	10 20Г 16ГС 15ХСН Д 10Г2С	340 460 530 500 520 370	6 3 5 8 7	угловое угловое стыко- вое стыко- вое стыко-	нижнее нижнее потолочное вертикаль- ное нижнее
8 9 10	BCτ2cπ 14Γ2 09Γ2 15	470 450 380	10 6 4	вое стыко- вое угловое стыко- вое стыко- вое стыко- вое	нижнее нижнее потолочное вертикаль- ное

 Π р и м е ч а н и е. При сварке угловых швов с толщиной детали 4 ... 6 мм катет шва будет 5 мм, с толщиной 6 ... 8 мм – 6 мм.

- 4. Рассчитать режим ручной дуговой сварки. Для расчета параметров РДС исходные данные взять в табл. 5, согласно номера варианта, заданного преподавателем.
 - а) Выбрать диаметр электрода (табл. 1 и 2).
 - б) Определить величину сварочного тока по формуле (1) и табл. 3.
 - в) Определить напряжение на дуге по формуле (2).
 - г) Выбрать тип и марку электрода.
 - д) Полученные данные занести в табл. 6.

6. РЕЗУЛЬТАТЫ РАСЧЕТА ПАРАМЕТРОВ РУЧНОЙ ДУГОВОЙ СВАРКИ

Номер вари- анта	Диаметр электрода $D_{\scriptscriptstyle 3}$, мм	Свароч- ный ток $I_{\text{св}}$,	Сварочное напряжение $U_{\rm д}$, В	Тип элек- трода	Скорость сварки $V_{\text{св}}$, м/ч

- 5. Рассчитать коэффициенты расплавления, наплавки и потерь по формулам (3) (5).
- 6. Определить скорость сварки по формуле (6).

СОДЕРЖАНИЕ ОТЧЕТА

- 1. Название и цель работы, описание оборудования сварочного поста.
- 2. Схема источника питания и описание основных его узлов.
- 3. Экспериментальные данные (табл. 4) и внешняя характеристика источника питания (рис.

3).

- 4. Расчет параметров режима ручной дуговой сварки, табл. 6.
- 5. Расчет технологических коэффициентов электродных покрытий.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Устройство и принцип работы сварочного трансформатора.
- 2. Электрическая дуга и ее свойства.
- 3. Внешняя характеристика источника питания и требования к ней.
- 4. Сварочные электроды.
- 5. Основные параметры режима ручной дуговой сварки.

Литература: [1, c. 80 - 81]; [4, c. 278 - 280].

ПОЛУАВТОМАТИЧЕСКАЯ СВАРКА В СРЕДЕ УГЛЕКИСЛОГО ГАЗА

Цель работы: знакомство с особенностями, оборудованием и технологией полуавтоматической сварки в среде углекислого газа.

Материалы, *оборудование*, *инструменты*: полуавтомат марки ПДГ-312-1У3, сварочная проволока, пластины для наплавки.

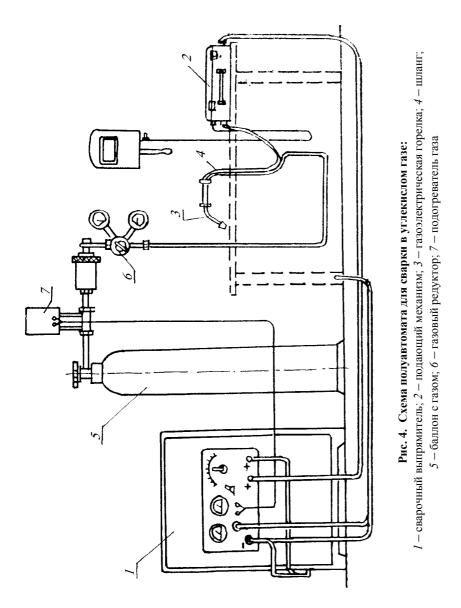
Общие методические указания

Особенность полуавтоматической сварки в среде углекислого газа заключается в том, что электрическая дуга горит между голой электродной проволокой и свариваемым металлом в среде углекислого газа, который оттесняет воздух из зоны сварки. В интервале высоких температур углекислый газ является активным окислителем, так как диссоциирует с образованием атомарного кислорода: $CO_2 = CO + O$. В результате, в сварочной ванне могут протекать следующие реакции:

$$C + O = CO$$
, $Fe + O = FeO$, $Mn + O = MnO$, $Si + 2O = SiO_2$.

Из этих реакций видно, что при сварке в углекислом газе происходит повышенное выгорание элементов, входящих в состав основного металла: углерода, кремния, марганца и др.

Чтобы подавить реакции окисления, а также пополнить выгоревшие примеси, при сварке в углекислом газе применяют электродную проволоку, легированную марганцем и кремнием. Они восстанавливают железо из его закисей, при этом образовавшиеся окислы марганца и кремния переходят в шлак:


$$FeO + Mn = MnO + Fe$$
; $2FeO + Si = SiO_2 + 2Fe$.

Сварка в среде углекислого газа — процесс высокопроизводительный — может выполняться во всех пространственных положениях и производится постоянным током обратной полярности. Переменный ток и постоянный ток прямой полярности не применяются из-за недостаточной устойчивости процесса и неудовлетворительного качества и формы шва.

В углекислом газе сваривают в основном сварные конструкции из конструкционной углеродистой и низколегированной стали (газопроводы, нефтепроводы, корпуса судов и химических аппаратов и т.п.).

Преимущества полуавтоматической сварки в среде углекислого газа с точки зрения ее стоимости и производительности позволяют заменять ею ручную дуговую сварку качественными электродами.

Для сварки в углекислом газе применяется полуавтомат ПДГ-312-1У3 (рис. 4), который предназначен для электродуговой сварки проволокой марки Св-08Г2С по ГОСТ 2246—70 диаметром 1,0 ... 1,4 мм в углекислом газе изделий из малоуглеродистой и низколегированной стали.

Подающий механизм предназначен для подачи электродной проволоки из кассеты через шланг в горелку. Проволока подается парой роликов, один из которых — ведущий ролик приводится в движение электродвигателем типа КПА-563. Скорость подачи проволоки изменяется в диапазоне 75 ... 1000 м/ч.

Шланг 4 предназначен для подвода сварочного тока и электродной проволоки от подающего механизма к горелке.

Газоэлектрическая горелка *3* служит для подвода сварочного тока, электродной проволоки и углекислого газа непосредственно к электрической дуге. На рукоятке горелки установлена пусковая кнопка для включения сварочного тока и двигателя подачи проволоки.

Газовая аппаратура включает в себя баллон с углекислотой, газовый редуктор 6 и подогреватель газа 7. Баллон предназначен для хранения углекислоты (малый -12 кг, большой -25 кг) под давлением 15 МПа. Подогреватель предназначен для подогрева углекислого газа, поступающего из баллона в редуктор с целью предупреждения замерзания клапанов при перепаде давления.

Редуктор предназначен для понижения давления газа до рабочего $-0.5\,\mathrm{M}\Pi a$ и поддержания его постоянным в процессе сварки.

Сварочный выпрямитель типа ВДГ-303-IV3 служит источником питания сварочной дуги. При сварке в среде защитных газов плавящимся электродом основными параметрами технологического режима являются: диаметр электродной проволоки D_3 в мм, сварочный ток $I_{\rm cв}$ в амперах, напряжение на дуге $U_{\rm d}$ в вольтах, скорость сварки $V_{\rm cв}$ в м/ч, скорость подачи электродной проволоки $V_{\rm п.п.}$ в м/ч, вылет электрода L_3 в мм, род тока и полярность. Диаметр электродной проволоки подбирают в зависимости от толщины свариваемого металла по данным табл. 7.

7. Рекомендуемые диаметры электродной проволоки для сварки в углекислом газе

Толщина металла <i>S</i> , мм	0,6	1,2	3,0	5,0	9,0	13,0
	1,0	2,0	4,0	8,0	12,0	18,0
Диаметр элек- тродной проволо- ки D_{9} , мм	0,5 0,8	0,8 1,0	1,0 1,2	1,6 2,0	2,0	2,0 2,5

Сварочный ток рассчитывается по формуле

$$I_{\rm CR} = jF_{\rm MI}, \, \mathbf{A}, \tag{7}$$

где j — плотность тока, A/mm^2 ; $F_{\rm эn}$ — площадь поперечного сечения электродной проволоки, mm^2 .

. Скорость подачи электродной проволоки рассчитывается по формуле $V_{\rm п.п.} = \frac{4\alpha_{\rm p}I_{\rm cb}}{\pi D_{\rm s}^2\rho} \ , \ {\rm MM/c},$

$$V_{\text{п.п.}} = \frac{4\alpha_{\text{p}}I_{\text{cB}}}{\pi D_{9}^{2}\rho}, \text{ MM/c}, \tag{8}$$

где α_p – коэффициент расплавления электродной проволоки, г/A \square · c; I_{cs} – сварной ток, A; D_9 – диаметр электродной проволоки, мм; $\rho = 7.85 \square \cdot 10^{-3}$ г/мм³ – плотность металла.

Величина коэффициента расплавления определяется из зависимости

$$\alpha_{\rm p} = \left(8.3 + 0.22 \frac{I_{\rm CB}}{D_{\rm s}}\right) \cdot 10^{-4} \,, \, \Gamma/A \, \Box \cdot {\rm c}. \tag{9}$$

Скорость сварки определяется по формуле

$$V_{\rm cB} = \frac{\alpha_{\rm H} I_{\rm cB}}{F_{\rm H} \rho}, \, \text{MM/c}, \tag{10}$$

где $\alpha_{\rm f}$ – коэффициент наплавки, г/А \square · с; $I_{\rm cB}$ – сварочный ток, А; $F_{\rm f}$ – площадь поперечного сечения шва, мм².

Коэффициент наплавки определяется по формуле

$$\alpha_{\rm H} = \alpha_{\rm p} \left(1 - \frac{\Psi}{100} \right), \, \Gamma / A \, \Box \cdot \mathbf{c}, \tag{11}$$

где $\psi = 7 \dots 15 \%$ — потери электродного металла на угар, испарение и разбрызгивание.

Площадь поперечного сечения шва $F_{\rm H}$ приближенно считается равной площади равностороннего треугольника с углом раскрытия кромок $60\Box$. Напряжение дуги выбирается по табл. 8.

8. Рекомендуемые значения напряжения дуги

Диаметр электродной проволоки D_3 , мм	0,8	1,0	1,2	1,4	1,6	2,0
Напряжение на дуге $U_{\text{д}}$, В	17	19	20	20	21	23
	22	24	27	31	34	37

Вылет электрода (длину электродной проволоки между ее концом и выходом из мундштука горелки) рекомендуется выбирать в зависимости от диаметра электродной проволоки по табл. 9.

9. Рекомендуемые значения вылета электродной проволоки в зависимости от ее диаметра

Диаметр электрод-						
ной						
проволоки D_{9} , мм	0,8	1,0	1,2	1,6	2,0	2,5
Вылет электрода	6	7		13	15	15
L_{9} , MM	12	13	8 15	20	20	30

Расход углекислого газа определяется в зависимости от величины тока, скорости сварки, вылета электрода и в среднем находится в пределах $1 \, \Box \, 10^{-4} \, \dots \, 3 \, \Box \, 10^{-4} \, \text{м}^3/\text{c}$.

Порядок выполнения работы

- 1. Изучить устройство и принцип работы полуавтомата для сварки в углекислом газе.
- 2. Подобрать и рассчитать основные параметры полуавтоматической сварки в среде углекислого газа. Необходимые данные для расчета взять в табл. 10 согласно номера варианта, заданного преподавателем.
 - а) Подобрать диаметр электродной проволоки по данным табл. 7.
 - б) Рассчитать сварочный ток по формуле (7).
 - в) Определить величину коэффициента расплавления по формуле (9).
 - г) Рассчитать скорость подачи электродной проволоки по формуле (8).
 - д) Определить коэффициент наплавки по формуле (11).
 - е) Определить скорость сварки по формуле (10).
 - ж) По табл. 8 выбрать напряжение дуги.
 - з) По табл. 9 выбрать величину вылета электродной проволоки.
- 10. Задание для расчета параметров режима полуавтоматической сварки в углекислом газе

Исходные		Номер варианта							
параметры сварки	1	2	3	4	5	6	7	8	
Толщина металла S , мм	0,6	1,0	2,0	4,0	5,0	8,0	10,0	15,0	
Плотность тока j , A/MM^2	250	200	150	120	120	100	100	90	

3. Результаты расчета занести в табл. 11.

11. Результаты расчета параметров режима полуавтоматической сварки в углекислом газе

Ва- ри- ант	Диа- метр элек- трода D_{3} , мм	Сва- роч- ный ток <i>I</i> , A	Скорость подачи проволоки $V_{\text{п.п.}}$, м/ч	Скорость сварки $V_{\text{св}}$, м/ч	Вылет электрода L_{2} , мм	Напря- жение на дуге <i>U</i> , В

Содержание отчета

- 1. Название и цель работы.
- 2. Сущность сварки в среде углекислого газа.
- 3. Схема полуавтомата с описанием основных узлов.
- 4. Расчет режима сварки.
- 5. Результаты расчетов (табл. 11).

Контрольные вопросы

- 1. Сущность способа сварки в углекислом газе.
- 2. Преимущества и недостатки данного способа по сравнению с ручной дуговой сваркой.
 - 3. Устройство и принцип работы полуавтомата.

Литература: [2, с. 79 – 100]; [3, с. 222 – 225].

СТЫКОВАЯ КОНТАКТНАЯ СВАРКА

Цель работы: ознакомиться с технологией и оборудованием контактной сварки, освоить методику выбора оптимальных параметров режима стыковой контактной сварки.

Оборудование, инструменты, материалы: машина стыковой сварки, линейка, штангенциркуль, напильник, наждачная бумага, образцы для сварки.

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Электрическая контактная сварка осуществляется нагревом и пластической деформацией заготовок в месте соединения.

Контактная сварка объединяет большую группу способов, основные особенности которых — надежность соединений, высокий уровень механизации и автоматизации, высокая производительность и культура производства. Около 30 % всех сварных соединений выполняют контактной сваркой. Область применения контактной сварки чрезвычайно широка: от космических аппаратов до миниатюрных полупроводниковых устройств и пленочных микросхем.

Контактная сварка основана на использовании закона Джоуля-Ленца

$$Q = 0.24 J^2 Rt$$
, Дж,

где Q — общее количество тепла, выделяемое в зоне сварки, Дж; J — сила сварочного тока, A; R — сопротивление сварочного контура, Ом; t — время прохождения тока, c.

По типу сварного соединения различают стыковую, точечную, рельефную и шовную контактную сварку.

Стыковая сварка — способ контактной сварки, при котором детали свариваются по всей поверхности соприкосновения. Для этого свариваемые заготовки I (рис. 5) закрепляют в зажимах стыковой машины 2, к которым по шинам 3 подводится электрический ток, и приводят в соприкосновение с помощью усилия P.

Сопротивление между зажимами и заготовками называется переходным сопротивлением R_{Π} , между свариваемыми заготовками — контактным сопротивлением R_{K} , а сопротивление выступающих концов заготовок — сопротивлением металла R_{M} . Поскольку контактное сопротивление R_{K} является наибольшим $(R_{K} > R_{\Pi} > R_{M})$, то максимальное количество тепла выделяется в месте

соприкосновения свариваемых деталей. Они на ⁴ греваются, сдавливаются, происходит сварка.

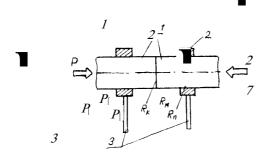


Рис. 5. Схема процесса стыковой сварки

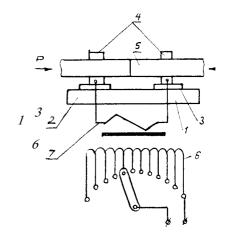


Рис. 6. Схема стыковой ма-

Стыковая машина (рис. 6) состоит из станины 1, на которой закреплена неподвижная контактная плита 2. Другая плита 3 может двигаться по направляющим вдоль станины. На контактных плитах установлены электроды 4, в которых зажимаются детали 5.

Детали приводятся в соприкосновение с помощью рычажного механизма подачи (на рис. 6 условно показан стрелкой P). В качестве источника тока используется понижающий трансформатор, первичная обмотка 6 которого секционирована, имеет много выводов для возможности изменения числа действующих витков, а, следовательно, и вторичного напряжения и мощности трансформатора. Если в сеть включена вся обмотка, то вторичное напряжение и мощность трансформатора наименьшие, наибольшая мощность будет при включении малого числа витков. Вторичная обмотка 7 состоит из одного или двух витков. $U_2 = 1 \dots$ 12 В. Сварочный ток составляет $1000 \dots 10 000$ А.

При стыковой сварке сопротивлением заготовки, закрепленные в зажимах машины, сдавливаются небольшим усилием P, а затем включается ток, металл разогревается до пластического состояния, ток выключается, а давление несколько увеличивается (производится осадка), происходит сварка. Этот способ требует механической обработки и тщательной зачистки поверхностей торцов заготовок перед сваркой. Неравномерность нагрева и окисление торцов заготовок понижает качество сварки сопротивлением, что ограничивает область ее применения. Рекомендуемые режимы стыковой контактной сварки сопротивлением приведены в табл. 12.

12. Режимы сварки сопротивлением круглых или квадратных заготовок из углеродистой стали

Площадь сечения заготовок F , мм ²	Установоч- ная длина на обе заготов- ки <i>l</i> , мм	Плот- ность тока $j, A/мм^2$	Время нагрева <i>t</i> , с	Припуск на о ку, мм об- щий током		без
				$l_{\rm oc}$, MM		
7	7	300	0,3	2,2	1,6	0,6
25	12	200	0,8	2,5	1,7	0,8
50	18	160	1,0	2,7	1,8	0,9
100	20	140	1,5	3,0	2,0	1,0
Прим	ечание. Да	вление ос	адки 10	30 N	ИПа.	

При стыковой сварке оплавлением заготовки устанавливают в зажимах машины, включают ток и медленно сближают их (рис. 7). При полном сближении заготовок и достижении равномерного оплавления всей поверхности стыка ток выключают и производят осадку.

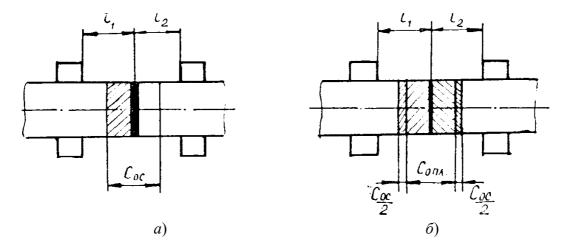


Рис. 7. Схема установки свариваемых деталей при стыковой сварке:

a — сопротивлением; δ — непрерывным оплавлением; $l_1 + l_2$ — суммарная установочная длина; C_{on} — припуск на оплавление; C_{oc} — припуск на осадку

При осадке вместе с расплавленным металлом из стыка в виде грата выдавливается окисленный металл, неметаллические включения и другие загрязнения. Рекомендуемые режимы стыковой сварки оплавлением приведены в табл. 13.

13. Режимы стыковой сварки оплавлением стержней из низкоуглеродистой стали

Диаметр	Припуск при сварке непрерывным оплавле нием $l_{\rm cn}$, мм		
стержня d, мм	общий	на оплавле- ние	на осадку
5	_	_	_
10	7,3	5,0	2,3
14	11,2	5,0 6,5	2,8
18	12,6	8,0	3,2
22	15,0	9,0	3,6

Примечания:

- 1. Суммарная установочная длина составляет 1,5 диаметра стержня.
- 2. Плотность тока $-5 \dots 50 \text{ A/мм}^2$ (нижние пределы соответствуют сварке заготовок большого сечения).
 - 3. Давление осадки 60 ... 80 МПа.

Порядок выполнения работы

- 1. Ознакомиться с устройством и принципом работы стыковой машины.
- 2. Ознакомиться с особенностями и технологией стыковой сварки сопротивлением и оплавлением.
- 3. Подобрать основные параметры стыковой контактной сварки и экспериментальным путем определить укорочение образцов, массу грата и массу выгоревшего металла в процессе сварки.

а) По табл. 12 и 13 подобрать режимы сварки сопротивлением и оплавлением и полученные данные занести в табл. 14.

14. Установленные режимы сварки сопротивлением и оплавлением

№ п/п	Ма- тери- ал	Способ стыко- вой сварки	Сече- ние стерж- ней <i>F</i> , мм ²	Плот- ность тока $j, A/мм^2$	Давление осадки P_{oc} , МПа	Установочная длина L , мм

- б) Подготовить две пары стальных образцов круглого сечения и зачистить торцы образцов наждачной бумагой.
 - в) Измерить диаметр и длину образцов до сварки, взвесить их. Результаты измерения и взвешивания занести в табл. 15.
 - г) Образцы попарно сварить методом сопротивления и оплавления.
- д) Измерить суммарную длину и определить массу сварных образцов. Полученные данные записать в табл. 15.

15. Результаты экспериментов

№ п/п	Диа- метр образ- цов <i>d</i> , мм	образ-	Масса образ- цов до свар- ки m_1 ,	Длина свар- ного об- разца l_2 , мм	Масса свар- ного об- разца <i>m</i> ₂ , мм	Уко- роче- ние образ- цов □ <i>l</i> , мм	Масса выго- рев- шего ме- талла □ m, г	Мас- са грата m_{Γ} , г
1								
2								

е) Определить укорочение образцов вследствие усадки

$$\Delta l = l_1 - l_2 \,, \tag{12}$$

где l_1 – общая длина образцов до сварки, мм; l_2 – длина сварного образца в мм.

ж) Определить массу выгоревшего металла

$$\Delta m = m_1 - m_2 \,, \tag{13}$$

где m_1 – общая масса образцов до сварки, г; m_2 – масса сварного образца (с гратом), г.

з) Определить массу металла, затраченного на образование грата

$$m_{\Gamma} = m_2 - m_{\text{reop}} \,, \tag{14}$$

где m_{Γ} — масса грата, г; m_2 — масса сварного образца (с гратом), г; $m_{\text{теор}}$ — теоретическая масса сварного образца без грата, равная

$$m_{\text{reop}} = \frac{\pi d^2}{4} l_2 \rho , \qquad (15)$$

где $\rho = 7,85 \cdot 10^{-3} \, \Gamma / \text{мм}^3 - \text{удельная масса металла.}$

Содержание отчета

- 1. Название и цель работы.
- 2. Сущность контактной сварки.
- 3. Схема стыковой машины с описанием ее основных узлов.
- 4. Результаты экспериментов (табл. 14 и 15).

Контрольные вопросы

- 1. Сущность и разновидности стыковой контактной сварки.
- 2. Устройство и принцип работы стыковой контактной машины.
- 3. Регулирование напряжения.

Литература: [3, с. 276 – 278]; [4, с. 316 – 320].

ЛАБОРАТОРНАЯ РАБОТА 4

ПОЛУАВТОМАТИЧЕСКАЯ СВАРКА ПОД СЛОЕМ ФЛЮСА

Цель работы: изучить оборудование сварочного поста полуавтоматической сварки под слоем флюса. Освоить методику расчета режима полуавтоматической сварки под слоем флюса.

Оборудование, приборы, материалы: полуавтомат ПШ-5, сварочная проволока, пластины для наплавки.

Общие методические указания


Сварка под слоем флюса — самый старый способ механизированной дуговой сварки. Ее осуществляют автоматами или шланговыми полуавтоматами голой сплошной проволокой. Зону стыка перед дугой засыпают слоем флюса толщиной до нескольких сантиметров. Дуга горит под слоем флюса и не видна, поэтому процесс иногда называют сваркой закрытой дугой. Часть флюса плавится и образует шлак, защищающий жидкий металл от воздуха. Толщина слоя шлака значительно больше, чем при ручной сварке, поэтому качество защиты лучше.

По технологии изготовления флюсы подразделяют на плавленные и керамические. Плавленные флюсы получают расплавлением соответствующих шихт в электрических и пламенных печах и их последующей грануляцией. Они состоят из различных оксидов и плавикового шпата. Плавленные флюсы обеспечивают защиту сварочной ванны от воздуха, стабилизацию сварочной дуги и раскисление металла шва. Керамические флюсы представляют собой гранулированные смеси порошков на связке. Наряду с рудоминеральными веществами в них вводят ферросплавы, углеродистые и другие вещества. Это позволяет легировать металл шва и проводить металлургическую обработку расплавленного металла, улучшающую качество шва.

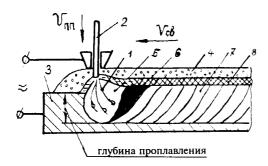

В качестве электродов для сварки под флюсом используют специальную сварочную проволоку. Сварочные проволоки для стали маркируют аналогично качественным и легированным сталям с буквами "Св" впереди. Например: Св-08, Св-01Х19Н9.

Схема установки и процесс полуавтоматической сварки горизонтального стыкового шва электродной проволокой под слоем флюса показаны на рис. 8 и 9.

Из рис. 9 видно, что под действием электрической дуги I, горящей между электродной проволокой 2 и свариваемым изделием 3, флюс 4 частично расплавляется, образуя эластичную оболочку 5 в форме пузыря и ванну жидкого шлака 6 на поверхности расплавленного металла 7.

Рис. 8. Устройство полуавтомата для сварки под слоем флюса: I — трансформатор; 2 — шкаф управления; 3 — подающий механизм; 4 — шланг; 5 — электродержатель с бункером для флюса

Рис. 9. Схема сварки под слоем флюса:

1 — электрическая дуга;

2 — электродная проволока;

3 – свариваемое изделие;

 $4 - \phi$ люс; $5 - \phi$ оболочка;

6 – ванна жидкого шлака;

7 – расплавленный металл;

8 – сварной шов

По мере перемещения дуги вдоль разделки шва наплавленный металл остывает и образует сварной шов 8. Жидкий шлак, имея более низкую температуру плавления, чем металл, затвердевает несколько позже, замедляя охлаждение металла шва.

Продолжительное пребывание металла шва в расплавленном состоянии и медленное остывание способствует выходу на поверхность всех неметаллических включений и газов, получению чистого, плотного и однородного по химическому составу металла шва.

Полуавтомат ПШ-5 представляет собой универсальный и высокоманевренный сварочный агрегат, работающий при постоянной скорости подачи электродной проволоки. Он может работать также при питании постоянным током от сварочного генератора.

Описание узлов сварочного полуавтомата

Подающий механизм предназначен для подачи электродной проволоки через гибкий шланг к держателю.

Электродержатель имеет рукоятку, на которую крепится бункер для флюса с заслонкой, кнопочный выключатель и упор для направления держателя по свариваемому стыку. Одного бункера достаточно для шва $80 \dots 130$ см.

Шкаф управления содержит контрольные приборы (амперметр, вольтметр) и устройства для включения и выключения системы управления.

Сварка под флюсом по сравнению с ручной дуговой сваркой более экономична, обеспечивает более стабильное высокое качество соединений и высокую производительность (в 5 – 20 раз выше ручной дуговой сварки). Недостатками процесса являются: повышенная жидкотекучесть металла и флюса; невозможность наблюдения за процессом сварки; возможность сварки только в нижнем положении.

Расчет режима сварки под слоем флюса

При полуавтоматической сварке под слоем флюса в режим входят: диаметр электродной проволоки, сварочный ток, напряжение на дуге, скорость подачи электродной проволоки, скорость сварки.

Марку электродной проволоки и флюс назначают в зависимости от химического состава свариваемого металла. При сварке низкоуглеродистых сталей применяют флюсы марок АН-348A и ОСЦ-45 (ГОСТ 9087–81) и низкоуглеродистые проволоки марок СВ-08 и СВ-08A (ГОСТ 2246–70).

Для сварки высоколегированных сталей используется проволока соответствующего состава, например, для сталей X18H10T – CB04X19H9 или CB-06X19H10T и флюсы марок AH-26, АНФ-16.

Устанавливают требуемую глубину проплавления h, мм. При односторонней сварке она равна толщине S металла h = S, а при двусторонней и угловой сварке h = 0.6S.

Выбирают ориентировочно сварочный ток из расчета 80 ... 100 A на 1 мм глубины проплавления: $I_{CB} = (80 \dots 100) h$, A. Назначают напряжение на дуге в диапазоне 30 ... 40 В.

Далее определяют массу наплавленного на изделие металла. При расходе электродной проволоки следует учитывать потери на угар и разбрызгивание, которые составляют $2\dots 5\%$ от веса наплавленного металла.

Диаметр электродной проволоки D_9 выбирают в зависимости от толщины свариваемого металла (табл. 16).

16. Значения диаметра электродной проволоки в зависимости от толщины свариваемого металла

S, mm	0,8 1	1,2 2	2 3	3 5	6 8
D_{9} , MM	0,5 0,8	0,8 1	1,2 1,6	1,6 2	1,6 2

Коэффициент наплавки $\alpha_{\rm H}$ выбирают в зависимости от сварочного тока и диаметра электродной проволоки, что составляет в среднем 14 ... 16 г/А · ч.

Скорость сварки ($V_{\text{св}}$, м/ч) определяют из выражения $V_{\text{св}} = = \alpha_{\text{н}} I_{\text{св}} / \gamma F_{\text{н.м}}$, где $\alpha_{\text{н}}$ – коэффициент наплавки, г/А · ч; γ – плотность металла, г/см³ (для стали γ = 7,85 г/см³); $F_{\text{н.м}}$ – площадь сечения наплавленного металла шва. При определении $F_{\text{н.м}}$ за основу принимаются три размера: глубина провара – h, мм; ширина шва – L, мм и выпуклость шва – g, мм. Эти величины определяются из коэффициента формы провара $\psi_{\text{пр}} = L / h$ и коэффициента формы валика $\psi_{\text{в}} = L / q$. Опытным путем установлены величины этих коэффициентов. Они составля-

ют $\psi_{np} = 1,3 \dots 4$ и $\psi_{B} = 5 \dots 8$. Принимаем $\psi_{np} = 3$ и $\psi_{B} = 6$. Тогда ширина шва составляет $L = \psi_{np} h = 3 h$, мм, а выпуклость шва $q = L/\psi_{B} = 3h/6 = h/2$, мм.

Площадь наплавленного металла можно определить по опытной формуле $F_{\text{н.м}} = 0,751 \ q$, мм², что в нашем случае составляет $F_{\text{н.м}} = 0,75 \cdot 3h \cdot 1/2 \ h = 1,125 \ h^2$, мм².

Зная площадь наплавленного металла, плотность и длину сварных швов, определяют массу наплавленного металла по формуле $G_{\text{н.м}} = F_{\text{н.м}} L \gamma$; где $G_{\text{н. м}}$ – масса наплавленного металла, г; $F_{\text{н.м}}$ – площадь наплавленного шва; L – длина сварных швов на изделии, см; γ – плотность металла, г/см³.

Скорость подачи электродной проволоки рассчитывается по формуле

$$V_{\text{п.п}} = \alpha_{\text{p}} I_{\text{cB}} / F_{\text{эл.пр}} \gamma$$
, м/ч,

где $\alpha_{\rm p}$ — коэффициент расплавления электродной проволоки, г/A · ч; $I_{\rm cB}$ — сварочный ток; $F_{\rm эл.}$ площадь поперечного сечения электродной проволоки; γ — плотность металла.

Коэффициент расплавления электродной проволоки можно приближенно принять равным коэффициенту наплавки, т.е. $14 \dots 16 \text{ г/A} \cdot \text{ч}$.

Порядок выполнения работы

- 1. Изучить устройство и принцип работы полуавтомата для сварки под флюсом. Зарисовать схему полуавтомата с описанием основных узлов.
- 2. Рассчитать режим сварки. Необходимые данные для расчета взять в табл. 17 согласно варианта, заданного преподавателем.

№ варианта	1	2	3	4	5
Толщина металла S , мм	2,6	2,8	1,0	1,2	3,0
Материал	ВСт3	15ГС	15Г2С	12XH	Сталь 10
№ варианта	6	7	8	9	10
Толщина металла S, мм	4,0	5,0	6,0	2,5	1,5
, ·					

17. Задание для расчета параметров режима сварки

3. Полученные результаты расчета занести в табл. 18.

18. Результаты расчета параметров режима сварки

Номер вари- анта	Диаметр электродной проволоки D_3 , мм	Сва- рочный ток $I_{\text{св}}$, А	Напря- жение дуги $U_{\rm д}$, В	Скорость подачи проволоки $V_{\text{п. п}}$, м/ч	Скорость сварки $V_{\rm cb}$, м/ч

Содержание отчета

- 1. Название и цель работы.
- 2. Сущность особенности и применение полуавтоматической сварки под слоем флюса.
- 3. Устройство и принцип работы полуавтомата ПШ-5.
- 4. Расчет параметров режима сварки (табл. 18).

Контрольные вопросы

- 1. Сущность, особенности и применение полуавтоматической сварки под слоем флюса.
- 2. Устройство и принцип работы полуавтомата для сварки.
- 3. Преимущества и недостатки способа.

Литература: [3, с. 272 – 275]; [4].

Лабораторная работа 5

РАСЧЕТ СВАРНОГО СОЕДИНЕНИЯ

Цель работы: выбрать оборудование, сварочные материалы и рассчитать режим сварки для заданной сварной конструкции.

Общие методические указания

Задание состоит из двух вопросов. Первый относится к изучению способа сварки, а второй – к разработке схем технологических процессов сварки изделий.

По первому вопросу задания следует дать краткое описание сущности рассматриваемого процесса, его технологических особенностей.

По второму – разработать схему технологического процесса сварки с указанием порядка наложения сварных швов и вида соединения, например 1 – приварка обечайки к днищу конструкции угловым кольцевым швом.

Выполнить расчеты основных технологических параметров в соответствии с вариантом задания указанного преподавателем.

Порядок выполнения работы

1. При ручной дуговой сварке основными параметрами режима являются: диаметр электрода, сварочный ток, напряжение на дуге и скорость сварки (смотри лабораторную работу 1).

Расход электродов с учетом потерь принимают равным 1,6 ... 1,8 от массы наплавленного металла. Зная площадь наплавленного металла, плотность и длину сварных швов, определить массу наплавленного металла по формуле: $G = F l \gamma$, где G — масса наплавленного металла, Γ ; F — площадь сечения шва; l — длина сварных швов изделия, см; γ — плотность металла, Γ /см³.

Количество электроэнергии, идущей на сварку изделия, определяется:

$$Q = J_{cB}U_{\pi}\tau$$
, $\kappa B T \cdot \Psi$,

где т – время сварки,

$$\tau = t/\eta$$
,

где t – время горения дуги, ч; $\eta = 0.3 \dots 0.8$ – коэффициент загрузки сварщика (при ручной дуговой сварке $\eta = 0.3 \dots 0.5$, а при автоматической $\eta = 0.6 \dots 0.8$);

$$t = L/v_{cB}$$
, Ч

где L – суммарная длина всех швов изделия, м; v_{cs} – скорость сварки, м/ч.

2. При сварке в среде защитных газов плавящимся электродом основными параметрами режима являются: сварочный ток, напряжение на дуге, скорость сварки, диаметр электродной проволоки, скорость подачи проволоки, вылет электрода (смотри лабораторную работу 2).

Зная расход газа и время сварки, можно подсчитать общее количество газа, идущего на сварку изделия. Расход электроэнергии определяется так же, как и при ручной дуговой сварке.

Выбор расхода защитного газа

Толщина металла S , мм		1,2 2	3 5	6 8
Выход газа, дм ³ /мин	6 7	10 12	14 16	16 18

Расход сварочной проволоки с учетом потерь для полуавтоматической сварки в углекислом газе составляет 1,08 от массы наплавленного металла, для аргонодуговой -1,1.

3. При автоматической сварке под флюсом в режим входят следующие параметры: диаметр и марка электродной проволоки, сварочный ток, напряжение на дуге, скорость подачи проволоки и скорость сварки (смотри лабораторную работу 3).

Расход электродной проволоки с учетом потерь для сварки под флюсом составляет – 1,03.

Изобразить схему и описать сущность процесса ручной дуговой сварки толстопокрытым электродом. Разработать технологическую схему сварки стальной конструкции (сталь 12XM, $\sigma_B = 450 \text{ M}\Pi a$), рис. 10.

Выбрать оборудование и сварочные материалы (марку и тип электрода). Рассчитать режим сварки, указать род и полярность тока. Определить расход сварочных электродов, электроэнергии и время сварки изделия. Указать методы контроля сварных швов данной конструкции.

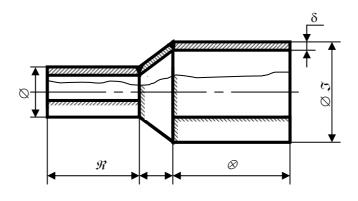


Рис. 10

No			Размер	оы, мм		
145	A	Б	В	Γ	Д	δ
1	250	500	300	100	300	4
2	400	650	400	150	400	5
3	500	700	350	200	350	6
4	150	300	200	80	200	4
5	100	200	250	100	250	4

ВАРИАНТ 2

Изобразить схему и описать сущность процесса ручной дуговой сварки толстопокрытым электродом. Разработать технологическую схему сварки стальной конструкции (сталь 0X18H10Ta), рис. 11.

Выбрать оборудование и сварочные материалы (марку и тип электрода). Рассчитать режим сварки, указать род и полярность тока. Определить расход сварочных электродов, электроэнергии и время сварки изделия. Указать методы контроля сварных швов данной конструкции.

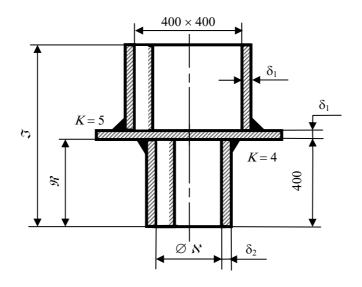


Рис. 11

№	Размеры, мм				
145	A	Б	В	δ_1	δ_2
1	220	600	150	6	4
2	250	800	200	6	5
3	180	600	300	5	4
4	150	550	200	5	4
5	200	700	250	6	4

Изобразить схему и описать сущность процесса ручной дуговой сварки толстопокрытым электродом. Разработать технологическую схему сварки стальной конструкции (сталь 17Γ CБ, $\sigma_B = 580 \text{ M}\Pi a$), рис. 12.

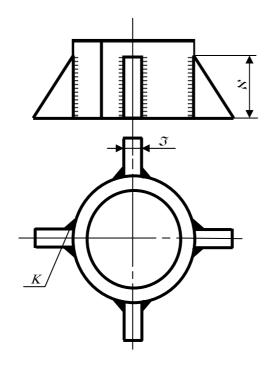
Выбрать оборудование и сварочные материалы (марку и тип электрода). Рассчитать режим сварки, указать род и полярность тока. Определить расход сварочных электродов, электроэнергии и время сварки изделия. Указать методы контроля сварных швов данной конструкции.

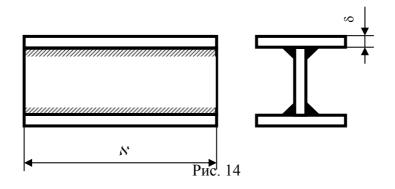
No	Размеры, мм			
312	A	Б		
1	300	150		
2	350	170		
3	400	200		
4	450	200		
5	250	100		

Изобразить схему и описать сущность процесса ручной дуговой сварки толстопокрытым электродом. Разработать технологическую схему сварки стальной конструкции (сталь $17\Gamma C$, $\sigma_B = 530$ МПа), рис. 13.

Выбрать оборудование и сварочные материалы (марку и тип электрода). Рассчитать режим сварки, указать род и полярность тока. Определить расход сварочных электродов, элек-

троэнергии и время сварки изделия. Указать методы контроля сварных швов данной конструкции.




Рис. 13

Размеры, мм			
№	A	Б	K
1	200	8	6
2	300	8	6
3	350	9	7
4	400	10	8
5	500	10	8

ВАРИАНТ 5

Изобразить схему и описать сущность процесса полуавтоматической сварки в среде углекислого газа. Разработать технологическую схему сварки стальной конструкции (сталь 25ГС2), рис. 14.

Выбрать оборудование и сварочные материалы (марку сварочной проволоки). Рассчитать режим сварки, указать род и полярность тока. Определить расход электродной проволоки и защитного газа, электроэнергии и время сварки изделия. Указать методы контроля сварных швов данной конструкции.

No	Размеры, мм		
715	A	δ	
1	800	10	
2	1200	10	
3	3000	18	
4	6000	20	
5	2000	15	

Изобразить схему и описать сущность процесса полуавтоматической сварки в среде углекислого газа. Разработать технологическую схему сварки конструкции из стали ВСт3, рис. 15.

Выбрать оборудование и сварочные материалы (марку сварочной проволоки). Рассчитать режим сварки, указать род и полярность тока. Определить расход электродной проволоки и защитного газа, электроэнергии и время сварки изделия. Указать методы контроля сварных швов данной конструкции.

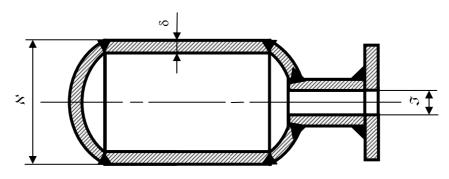


Рис. 15

Nº	Размеры, мм			
	A	Б	δ	
1	800	250	5	
2	600	200	5	
3	1000	300	6	
4	1200	350	8	
5	700	250	6	

вариант 7

Изобразить схему и описать сущность процесса полуавтоматической сварки в среде аргона. Разработать технологическую схему сварки конструкции из стали 04X18H10T, рис. 16.

Выбрать оборудование и сварочные материалы (марку сварочной проволоки). Рассчитать режим сварки, указать род и полярность тока. Определить расход электродной проволоки и защитного газа, электроэнергии и время сварки изделия. Указать методы контроля сварных швов данной конструкции.

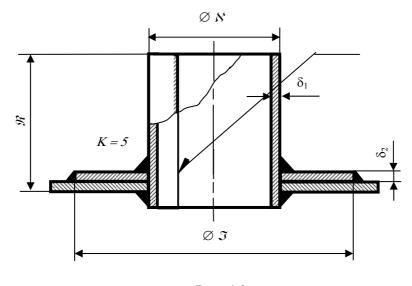


Рис. 16

Nº	РАЗМЕРЫ, ММ				
	A	Б	В	δ_1	δ_2
1	500	700	700	6	5
2	700	900	900	8	6
3	900	1000	1300	8	6
4	400	600	600	6	5
5	600	800	950	6	5

Изобразить схему и описать сущность процесса полуавтоматической сварки под слоем флюса. Разработать технологическую схему сварки конструкции из стали 0X18H10T, рис. 17.

Выбрать оборудование и сварочные материалы (марку сварочной проволоки и флюса). Рассчитать режим сварки, указать род и полярность тока. Определить расход электродной проволоки и флюса, электроэнергии и время сварки изделия. Указать методы контроля сварных швов данной конструкции.

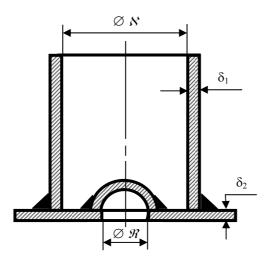


Рис. 17

Nº	РАЗМЕРЫ, ММ				
	A	Б	δ_1	δ_2	
1	800	300	8	10	
2	1000	400	10	12	
3	1200	500	10	12	
4	850	350	8	10	
5	700	250	6	8	

Изобразить схему и описать сущность процесса автоматической сварки под слоем флюса. Разработать технологическую схему сварки конструкции из стали 04X18H9, рис. 18.

Выбрать оборудование и сварочные материалы (марку сварочной проволоки и флюса). Рассчитать режим сварки, указать род и полярность тока. Определить расход электродной роволоки и флюса, электроэнергии и время сварки изделия. Указать методы контроля сварных швов данной конструкции.

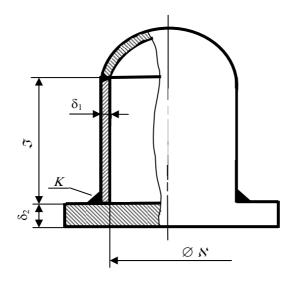


Рис. 18

№	Размеры, мм				
	A	Б	K	δ_1	δ_2
1	1500	2000	6	8	15
2	1800	2500	8	10	20
3	2000	2500	8	12	20
4	2200	2800	8	12	20
5	2200	2500	8	10	20

ВАРИАНТ 10

Выбрать способ приварки патрубков из меди (рис. 19). Изобразить схему сварки и описать сущность процесса выбранного способа сварки.

Выбрать необходимое оборудование и сварочные материалы. Рассчитать режим сварки, указать род и полярность тока. Определить расход сварочных материалов, электроэнергии и время сварки. Указать методы контроля качества сварных швов данной конструкции.

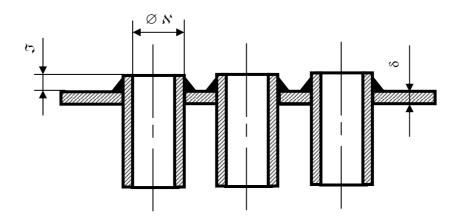


Рис. 19

№	Размеры, мм			
	A	Б	δ	
1	50	4	5	
2	70	5	7	
3	80	6	10	
4	100	6	12	
5	120	8	15	

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. **Хренов, К.К.** Сварка, резка и напайка металлов / К.К. Хренов. М. : Машиностроение, 1973. 81 с.
- 2. **Федин, А.П.** Сварка, наплавка и резка материалов / А.П. Федин. Мн. : Высш. школа, 1972.-244 с.
- 3. **Справочник** сварщика / под ред. д-ра техн. наук, проф. В.В. Степанова. М. : Машиностроение, 1982.-278 с.
- 4. **Дальский, А.М.** Технология конструкционных материалов / А.М. Даль- ский. М. : Машиностроение, 1977. 370 с.

СОДЕРЖАНИЕ

Лабораторная работа I—Руч	чная дуговая сварка	3
Лабораторная работа 2 Пол де углекислого газа	туавтоматическая сварка в сре-	9
Лабораторная работа 3 Ст	ыковая контактная сварка 1	14
1 1 1	луавтоматическая сварка под 1	19
Лабораторная работа 5 Рас	±	24
Список рекомендуемой литер	21	31