
ЭЛЕКТРОТЕХНИКА ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

• ИЗДАТЕЛЬСТВО ТГТУ •

Тамбовский государственный технический университет

ЭЛЕКТРОТЕХНИКА

ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

Методические указания и варианты расчетно-графических работ для студентов 2 — 3 курсов неэлектротехнических специальностей дневной и заочной форм обучения

Тамбов
• Издательство ТГТУ • 2004

УДК 621.3 ББК **←** 29-5 я 73-5 А44

Рецензент Доктор технических наук, профессор $\it C.H.$ Дворецкий

Составители: В.В. Афонин, И.Н. Акулинин, А.А. Ткаченко, К.А. Набатов

А44 Электротехника. Линейные электрические цепи: Метод. указ. / Сост.: В.В. Афонин, И.Н. Акулинин, А.А. Ткаченко, К.А. Набатов. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2004. 32 с.

Содержат задания и варианты расчетно-графических работ по теме «Линейные электрические цепи постоянного и синусоидального токов».

Предназначены для студентов неэлектротехнических специальностей дневной и заочной форм обучения.

УДК 621.3 ББК **←** 29-5 я 73-5

© Тамбовский государственный технический университет (ТГТУ), 2004
Учебное издание

ЭЛЕКТРОТЕХНИКА

ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

Методические указания

Составители: АФОНИН Владимир Васильевич, АКУЛИНИН Игорь Николаевич, ТКАЧЕНКО Александр Алексеевич, НАБАТОВ Константин Александрович

Редактор В.Н. Митрофанова Инженер по компьютерному макетированию Т.А. Сынкова

Подписано к печати 26.03.2004. Формат $60 \times 84/16$. Гарнитура Times. Бумага офсетная. Печать офсетная. Объем: 1,86 усл. печ. л.; 1,6 уч.-изд. л. Тираж 100 экз. С. $260^{\rm M}$

Издательско-полиграфический центр Тамбовского государственного технического университета 392000, Тамбов, ул. Советская, 106, к. 14

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Целью настоящей расчетно-графической работы (РГР) является формирование у студентов дневного и заочного отделений практических навыков решения задач по первому разделу «Электротехника. Линейные электрические цепи» дисциплины «Электротехника и электроника»; углубление и закрепление теоретических знаний, приобретение навыков оформления технической документации и использования электронно-вычислительной техники при проведении технических расчетов.

При выполнении расчетно-графической работы студентам рекомендуется предварительно ознакомиться с теоретическими предпосылками, изложенными в лекционном курсе, а также с рекомендованной литературой.

Расчетно-графическая работа содержит исходный текст задания и 150 вариантов, отличающихся друг от друга частично по схемному содержанию и, в основном, по данным электрических величин, но примерно одинаковой сложности расчета. Выбор варианта осуществляется преподавателем.

Расчетно-графическая работа оформляется формата A4 на листах (297 × 210 мм). Записи на листах выполняют на одной стороне. Допускается выполнение работ на развернутых двойных листах из школьных тетрадей в клетку. Расчет искомых величин желательно вести сначала в общем виде (где возможно), а затем в полученные окончательные формулы поставить числовые значения. Не рекомендуется загромождать работы излишними промежуточными вычислениями. При построении графиков и векторных диаграмм необходимо соблюдать принятые в учебных пособиях правила, выбирать удобные масштабы (как правило, кратные числам 2, 5, 10), обязательно указать масштаб, обозначения осей и, если это графики, размерности по ним. Исходные рисунки и данные заданий рекомендуется выполнять в виде, приведенном в методических указаниях, а вспомогательные схемы - на усмотрение студента с использованием чертежных инструментов. Для элементов схем и электрических величин следует пользоваться действующими ГОСТ 2.710-81 и 2.755-87.

Титульный лист содержит название вуза, кафедры, расчетно-графической работы, фамилии и инициалы студента и преподавателя, номер группы. Образец оформления титульного листа приведен в прил. 1.

В прил. 2 даны рекомендации по выполнению расчетно-графической работы.

Расчетно-графическая работа считается зачтенной, если она выполнена аккуратно, правильно и защищена устно перед закрепленным кафедрой преподавателем. Зачтенные работы хранятся на кафедре.

Расчетно-графическая работа 1

ЛИНЕЙНЫЕ ЦЕПИ ПОСТОЯННОГО И СИНУСОИДАЛЬНОГО ТОКОВ

Для электрической схемы, соответствующей номеру варианта (табл. 1.1) и изображенной на рис. 1.1-1.20, выполнить следующее.

- 1 Для цепей постоянного тока рассчитать параметры элементов, взяв модуль комплексного числа (см. табл. 1.1). Для цепей синусоидального тока необходимо:
 - а) записать исходные данные в показательной форме;
- б) рассчитать параметры r-, L-, C-элементов, включенных в ветви схемы, на основании заданной алгебраической формы;
 - в) вычертить развернутую схему замещения исходной схемы с указанием r-, L-, C-элементов.

- 2 Составить на основании законов Кирхгофа систему уравнений для расчета токов в ветвях схемы. Для схемы синусоидального тока записать эти уравнения в интегрально-дифференциальной и символической формах.
- 3 Составить системы уравнений для расчета токов согласно методов контурных токов и узловых потенциалов. Для цепей синусоидального тока использовать символическую форму.
- 4 Определив на основании пп. 2 и 3 задания наиболее рациональный метод расчета токов заданной схемы, произвести расчет токов.
- 5 Определить ток, протекающий через заданный резистор R_k (цепь постоянного тока) или комплексное сопротивление Z_k (цепь синусоидального тока), используя метод эквивалентного генератора.
- 6 Проверить правильность расчета токораспределения в схеме, составив уравнение баланса мощности.
- 7 Подключить вольтметр для измерения напряжения между указанными в табл. 1.1 точками схемы и определить его показания.
- 8 Построить совмещенную векторную топографическую диаграмму напряжений и векторную диаграмму токов для контура, указанного преподавателем в исходной форме. Для цепи постоянного тока построить потенциальную диаграмму.
- 9 Определить показания ваттметра, измеряющего мощность ветви схемы. Последняя определяется по наличию комплексного сопротивления, указанного в табл. 1.1. Для этого использовать два способа:
 - а) с помощью выражения для комплексной мощности;
 - б) по формуле

$$P = UI \cos \beta$$
,

где U – напряжение, приложенное ко всей ветви; $\beta = \psi_u - \psi_i$.

Показать угол β на векторной диаграмме, построенной специально для векторов тока и напряжения.

10 Для указанного преподавателем контура исходной схемы произвести графический расчет токов, используя векторную диаграмму, построенную в декартовой системе координат. Токи узлов схемы, не входящие в заданный контур, считать заданными (они определены в п. 4 задания). Указать точность расчета

$$T = 100 \% - \delta$$
,

где δ – относительная погрешность.

11 Для указанной преподавателем ветви исходной схемы построить временные диаграммы тока и напряжения с указанием и обозначением основных и дополнительных параметров.

Примечания:

- 1 Пункты задания 9, 10, 11 выполняются для цепей синусоидального тока.
- 2 Вольтметр в цепи синусоидального тока измеряет действующее значение напряжения.
- 3 На заданной схеме цепи обязательно показать подключение вольтметра и ваттметра.
- 4 Если в задании эдс источника равна нулю, то это место в ветви закорачивается.
- 5 Если в задании ток источника тока равен нулю, то ветвь с таким источником тока из схемы исключается.

вариан-і	ису-	Ė 1, B	Ė 2, B	Ė 3, B	Ė 4, B	<i>i</i> ₁ , A	<i>j</i> ₂ , A
----------	------	--------	--------	--------	--------	---------------------------	---------------------------

1	2	3	4	5	6	7	8
1	1	0	10 + <i>j</i> 10	2 - j5	11	j3	1
2	2	4	0	20 - <i>j</i> 50	- <i>j</i> 60	0	8
3	3	12 + <i>j</i> 78	- 4 - j80	0	5 – <i>j</i> 28	2 - j5	3-j
4	4	85 – <i>j</i> 15	27 + <i>j</i> 80	- 16 + j55	25 – <i>j</i> 25	8	- <i>j</i> 9
5	5	0	52	65 – <i>j</i> 82	88	j5	4 + j8
6	6	- <i>j</i> 90	- <i>j</i> 34	99	41 – <i>j</i> 25	3 – <i>j</i> 4	0
7	7	98	-j32	0	<i>j</i> 32	1 + <i>j</i>	-5+j
8	8	18 + <i>j</i> 57	0	28 – <i>j</i> 16	67 – <i>j</i> 70	8,5	2
9	9	20 + j25	83 – <i>j</i> 17	53 + <i>j</i> 53	14	0	6 – <i>j</i> 7
10	10	45	0	25 – <i>j</i> 15	35 – <i>j</i> 5	2 + j3	0
11	11	17 + <i>j</i> 90	0	14 + <i>j</i> 70	80 + <i>j</i> 15	5 – <i>j</i> 8	2-j3
12	12	0	14	93	0	-2+ j7	-j
13	13	65	0	- <i>j</i> 99	50 + j50	0	j
14	14	10 + <i>j</i> 17	50 – <i>j</i> 22	0	-32 + j18	1 + <i>j</i> 5	9+ <i>j</i>
15	15	j25	89	92	0	4	4 – <i>j</i> 9
16	16	85 – <i>j</i> 16	80 + <i>j</i> 14	0	-2+ j90	2 - j8	1-j3
17	17	<i>j</i> 25	0	92	35 + j70	0	8
18	18	0	-j40	89	77 + <i>j</i> 88	5 + <i>j</i>	7 – j
19	19	16 + j20	0	14 + <i>j</i> 70	99	0	-4+ j9
20	20	14 + <i>j</i> 69	92	0	- 52 + j80	5 – <i>j</i>	0
21	19	- 19 + j38	99 – <i>j</i> 99	4-j	0	1 + <i>j</i>	-4 - j8
22	17	8 - j14	73 + j20	0	57 – <i>j</i> 14	1 – <i>j</i> 7	6
23	15	<i>j</i> 49	0	81 + <i>j</i> 33	- 28 +	0	-3 + j3

					j3		
24	13	77	-11+	<i>j</i> 18	0	8	j9
			j66				
25	11	21 - j3	0	0	19	5 + j8	-8 - j7

Таблица 1.1

<u>Z</u> 1, Ом	<u>Z</u> 2, Ом	<u>Z</u> 3, Ом	<u>Z</u> 4, Ом	<u>Z</u> 5, Ом	<u>Z</u> 6, Ом	<u>Z</u> 7, Ом	Воль т- метр: точ- ки схе- мы	<i>f</i> , Гц	ΜЭ Γ: <i>Z_k</i>	Ват т- мет р: <i>Z_k</i>
9	10	11	12	13	14	15	16	17	18	19
0	- <i>j</i> 15	- <i>j</i> 40	0	25	50 - j20	12 + j4	1 – 6	40	Z_2	Z_2
28	0	- <i>j</i> 65	<i>j</i> 10	3+ <i>j</i>	28+ <i>j</i> 90	10+ j20	2-5	60	Z_1	Z_4
11- <i>j</i> 8	26+ <i>j</i> 12	0	− <i>j</i> 55	60	0	<i>j</i> 34	3 – 4	80	Z_2	Z_7
0	11+ <i>j</i> 44	40− <i>j</i> 16	0	25	<i>−j</i> 78	0	4 – 3	100	Z_3	Z_6
68	0	12+ <i>j</i> 17	35 – <i>j</i> 16	0	15 – <i>j</i> 99	10+ j77	5 – 3	120	Z_1	Z_3
55	25	0	12+ <i>j</i> 17	35 – <i>j</i> 20	0	25 + j80	1 – 4	40	Z_1	Z_7
<i>j</i> 15	− <i>j</i> 73	− <i>j</i> 42	0	35+ <i>j</i> 35	42 + j65	0	1 – 3	160	Z_2	Z_6
- <i>j</i> 6	0	91+ <i>j</i> 14	18 <i>–j</i> 43	0	35 – <i>j</i> 20	20 <i>-j7</i> 4	3 – 1	150	Z_1	Z_4
32 + <i>j</i> 51	82+ <i>j</i> 15	0	27	30 <i>-j</i> 45	0	30- <i>j</i> 50	5 – 6	140	Z_2	Z_7
65	35	-j20	55 <i>-j</i> 5	28+ <i>j</i> 50	15 – j65	0	1-6	130	Z_6	Z_1
12+ <i>j</i> 65	0	68	35	0	28+ <i>j</i> 50	30 <i>-j</i> 40	5 – 3	120	Z_7	Z_6
31 – <i>j</i> 18	16+ <i>j</i> 23	51+ <i>j</i> 32	0	10 <i>-j</i> 35	99 – j25	10- <i>j</i> 69	5 – 2	110	Z_6	Z_7
5	0	45	17+ <i>j</i> 73	71 <i>–j</i> 19	25 – <i>j</i> 42	30- <i>j</i> 68	1 – 6	100	Z_1	Z_3
10+ j45	12 <i>-j</i> 35	0	26	- <i>j</i> 80	0	<i>j</i> 50	4-2	90	Z_3	Z_1
0	27 – j52	35+ <i>j</i> 14	0	40	¥0− <i>j</i> 20	<i>−j</i> 38	1 – 2	80	Z_2	Z_3
14+ <i>j</i> 63	29	0	− <i>j</i> 45	29+ <i>j</i> 39	0	49+ <i>j</i> 18	1 – 4	70	Z_3	Z_2

11 – <i>j</i> 65	27+ j39	35 – <i>j</i> 63		0	19	-j80	2 – 3	60	Z_1	Z_6
0	32 + <i>j</i> 51		-	- <i>j</i> 42	14+ <i>j</i> 91	10- <i>j</i> 35	3 – 5	50	Z_6	Z_1
99 – j25	8- <i>j</i> 28	25 – j42	17+ <i>j</i> 75	0	1 1− <i>j</i> 21	16	3 – 5	40	Z_1	Z_4
10 <i>–j</i> 68	j43	0	- <i>j</i> 51	51 + <i>j</i> 32		<i>j</i> 99	1 – 4	50	Z_4	Z_1
0	31+ <i>j</i> 11	15+ <i>j</i> 11	0	20+ <i>j</i> 16	2	56-j	2-5	60	Z_3	Z_5
18	57 – j39	0	l 1 – <i>j</i> 27	78 <i>–j</i> 18	0	12+ <i>j</i> 78	1 – 4	70	Z_5	Z_3
40	88	23 <i>-j</i> 19	24 + j3	0	17	43 <i>-j</i> 33	3 – 4	80	Z_3	Z_4
0	<i>−j</i> 14	38+ <i>j</i> 4	0	82+ <i>j</i> 7	41	47 + j13	2 – 8	90	Z_3	Z_1
13	0	99 – j46	32 + <i>j</i> 99	56 <i>–j</i> 39	38	54 <i>–j</i> 99	4 – 5	100	Z_5	Z_6

Номер вариан- та	Рису- нок	Ė 1, B	Ė 2, B	Ė 3, B	Ė 4, B	<i>j</i> ₁ , A	<i>j</i> ₂ , A
1	2	3	4	5	6	7	8
26	9	0	-89	9	-12+ <i>j</i> 98	-2-j3	-9
27	7	-51-j	-63 + j19	-17- <i>j</i> 60	47- <i>j</i> 6	0	0
28	5	0	-j99	13 <i>-j</i> 7	- <i>j</i> 41	4	2+j
29	3	22+ <i>j</i> 11	2+ <i>j</i> 27	-55- <i>j</i> 15	0	-6+ <i>j</i> 9	4-j4
30	1	0	<i>j</i> 14	-j39	9- <i>j</i> 9	0	-9- <i>j</i> 9
31	2	18+j	0	28 - j5	0	-1+j9	4-j
32	4	41 - j3	73 - j18	44+ <i>j</i> 17	14+ <i>j</i> 51	0	-3+j9
33	6	81 <i>-j</i>	29 <i>-j</i> 89	18 <i>-j</i> 39	61 <i>–j</i> 19	<i>j</i> 9	7+ <i>j</i>
34	8	68+ <i>j</i> 13	0	17 <i>-j</i> 66	- <i>j</i> 13	-8-j3	0
35	10	0	12 - j33	1 – <i>j</i> 99	44 - j44	7+ <i>j</i> 8	1 – <i>j</i> 3
36	12	16- <i>j</i> 12	0	89 + j22	0	-3+j2	<i>j</i> 31
37	14	0	49+ <i>j</i> 13	36 <i>-j</i> 35	15 <i>-j</i> 54	0	− <i>j</i> 8
38	16	76+ <i>j</i> 7	0	-11-j	12 + j78	2-j	0
39	18	0	38 - j17	20 + j4	77+ <i>j</i> 16	0	-4+j7
40	20	13 + j11	43 + <i>j</i> 99	14 <i>-j</i> 39	11-j23	-9	2
41	19	29 <i>-j</i> 11	19 <i>-j</i> 4	87 <i>-j</i> 5	41 + j28	0	1+ <i>j</i> 7

16	10+ <i>j</i> 4	0	14 + j74	0	-9-j	8+ <i>j</i> 2
13	0	71 - j13	0	33 <i>-j</i> 61	0	-3-j5
10	20-j20	<i>j</i> 15	0	74 + j13	1+ <i>j</i> 3	0
7	89 <i>–j</i> 71	14+ <i>j</i> 8		13 <i>-j</i> 6	0	4+ <i>j</i> 8
			J18			
4	58+ <i>j</i> 3	0	-40	37 <i>-j</i> 17	-3+j2	0
1	1-j22	39 <i>–j</i> 89	0	20 - j78	7+ <i>j</i>	8-j2
2	0	19+ <i>j</i> 41	0	8-j3	2- <i>j</i> 9	-9+j
5	67+ <i>j</i> 16	0	19 <i>–j</i> 86	71 + j63	4-j8	6- <i>j</i> 5
8	0	61 <i>-j</i> 71	0	84 + j37	6+ <i>j</i> 7	9- <i>j</i> 8
	13 10 7 4 1 2 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

<u>Z</u> 1, Ом	<u>Z</u> 2, Ом	<u>Z</u> 3, Ом	<u>Z</u> 4, Ом	<u>Z</u> 5, Ом	<u>Z</u> 6, Ом	<u>Z</u> 7, Ом	Воль т- метр: точ- ки схе- мы	<i>f</i> , Гц	ΜЭ Γ: <i>Z</i> _k	Ват т- мет р: Z_k
9	10	11	12	13	14	15	16	17	18	19
0	51 <i>-j</i> 13	16 <i>–j</i> 39	0	45 + j44	− <i>j</i> 5	85 + j15	3 – 5	110	Z_5	Z_7
89	9+ <i>j</i> 71	34+ <i>j</i> 88	74 <i>– j</i> 99	0	19	99 – j2(3 – 5	120	Z_7	Z_3
99	0	59 – <i>j</i> 45	35 – <i>j</i> 18	27 – <i>j</i> 27	87	0	1 – 4	130	Z_1	Z_3
28	37+ <i>j</i> 14	0	19+ <i>j</i> 29	- <i>j</i> 36	0	3- <i>j</i> 14	1 – 4	140	Z_7	Z_4
17	12 <i>-j</i> 2	0	-j44	76	32	20+ <i>j</i> 20	1 – 3	150	Z_5	Z_6
11+ <i>j</i> 27	0	-1+j20	7 – <i>j</i> 28	29 <i>–j</i> 78	13+ <i>j</i> 13	14 <i>-j</i> 35	5 – 2	160	Z_1	Z_4
0	27+ <i>j</i> 18	0	46 <i>-j</i> 2	-16+ <i>j</i> 66	j	-53- <i>j</i> 3	5 – 1	155	Z_2	Z_7
0	38 – <i>j</i> 20	74+ <i>j</i> 11	0	52 – <i>j</i> 22	30+ <i>j</i> 9	0	3 – 6	145	Z_5	Z_5
¥1− <i>j</i> 12	- <i>j</i> 90	12 <i>-j</i> 9	0	23 + <i>j</i> 31	50 <i>-j</i> 1	14 <i>– j</i> 99	2 – 4	135	Z_1	Z_2
20+ j13	0	0	9 <i>–j</i> 39	-45 + j18	17 <i>-j</i> 11	69	3 – 7	125	Z_1	Z_4
51 – j87	25+ <i>j</i> 4	37 – <i>j</i> 42	32+ <i>j</i> 5	j77	19+ <i>j</i> 44	0	3 – 1	115	Z_5	Z_6
79+j	15 <i>-j</i> 19	0	- <i>j</i> 18	14+ <i>j</i> 3	55 – j83	-34 + j7	1 – 3	105	Z_2	Z_1
0	-9-	91+	2-j40	31+	-26-	88	2 – 4	95	Z_3	Z_2

	j68	<i>j</i> 13		<i>j</i> 76	<i>j</i> 62					
31 - j14	12 <i>-j</i> 92	2 + j31	27 – <i>j</i> 18	90 <i>–j</i> 19	0	2+ <i>j</i>	2 – 6	85	Z_4	Z_7
0	60	-54 + j43	0	-43	0	99 – j88	5 – 3	75	Z_7	Z_5
3+ <i>j</i> 48	77 – <i>j</i> 7	0	12 <i>-j</i> 18	56+ j17	0	27 <i>–j</i> 13	1 – 3	65	Z_1	Z_2
61 – <i>j</i> 56	20+ j26	25+ <i>j</i> 6	-55+ j34	0	-73- <i>j</i> 8	13 <i>–j</i> 53	1 – 2	55	Z_4	Z_3
l 1 <i>–j</i> 83	33+ <i>j</i> 8	71 <i>–j</i> 66	17 <i>–j</i> 11	36+ <i>j</i> 6	7 + <i>j</i> 44	-23	7 – 8	45	Z_4	Z_5
74+ <i>j</i> 50	52 + j67	4+ <i>j</i> 54	0	41 – <i>j</i> 77	39 <i>–j</i> 71	87 + <i>j</i> 55	2 – 4	65	Z_7	Z_6
- <i>j</i> 36	50 <i>-j</i> 87	0	66 <i>–j</i> 49	99+ <i>j</i> 4	0	86	1 – 2	85	Z_2	Z_4
72 <i>–j</i> 63	12 <i>–j</i> 99	63 + j32	0	j5	-59+ j55	58- <i>j</i> 2	1 – 3	105	Z_1	Z_7
25 – <i>j</i> 78	0	19 <i>–j</i> 36	20 + j3	0	59 – <i>j</i> 23	18 <i>–j</i> 9	2 – 6	125	Z_7	Z_1
39 – <i>j</i> 29	69+ j14	78 <i>-j</i> 13	18 <i>–j</i> 18	0	-21 - <i>j</i> 21	-75- <i>j</i> 11	3 – 5	145	Z_2	Z_4
0	6+ <i>j</i> 32	0	14+ <i>j</i> 89	-37 + j31	9 <i>-j</i> 8	14 <i>–j</i> 48	4 – 5	165	$\overline{Z_5}$	Z_6
24+ <i>j</i> 13	0	24 <i>-j</i> 71	2-j3	49+ <i>j</i> 21	1- <i>j</i>	15+ <i>j</i> 66	4 – 3	150	$\overline{Z_6}$	Z_7

Номер вариан- та	Рису- нок	Ė 1, B	Ė 2, B	Ė 3, B	Ė 4, B	<i>j</i> ₁ , A	<i>j</i> ₂ , A
1	2	3	4	5	6	7	8
51	11	0	40-j4	0	71 - j10	-1+j3	9-j
52	14	2+ <i>j</i> 99	0	71 – - <i>j</i> 14	0	2+ <i>j</i> 4	4+ <i>j</i> 7
53	17	-31 - <i>j</i> 81	53+ <i>j</i> 13	23 <i>-j</i> 29	-13 + j18	0	8+ <i>j</i> 8
54	20	10+ <i>j</i> 3	-73 - <i>j</i> 87	-56+ <i>j</i> 21	0	8- <i>j</i> 7	0
55	16	0	40	3+ <i>j</i> 79	26- <i>j</i> 39	5+ <i>j</i> 5	8
56	12	51 <i>-j</i> 47	20 - j33	0	59 <i>–j</i> 91	0	9 <i>–j</i> 6
57	8	-69+ <i>j</i> 31	-38- <i>j</i> 92	77 – <i>j</i> 55	12- <i>j</i> 70	0	6+ <i>j</i> 3
58	4	4-j77	-j78	0	69+ <i>j</i> 18	- <i>j</i> 8	4-j2
59	1	0	0	7+ <i>j</i> 97	5+ <i>j</i> 63	3-j7	1+ <i>j</i>
60	6	29 + j30	75 + <i>j</i> 17	0	38 <i>-j</i> 55	0	5+ <i>j</i> 7
61	11	0	-80 + j	-13 + j5	<i>j</i> 53	-8+j6	j5
62	16	86 <i>-j</i> 14	65 <i>-j</i> 17	27 <i>-j</i> 31	45 - j17	0	-3+j2

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	63	20	j87	32 + j20	10+ <i>j</i> 9	-93 + j5	7	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	64	15	98 + j3	-4+j	-92	0	3 - j4	-8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	65	10	-16+ <i>j</i> 9	j78	0	28 - j18	- <i>j</i> 2	6+ <i>j</i> 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	66	5	-71	-50+j2	-13+j	-j13	-5 + j	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	67	1	0	-46	-98 + j3	57	0	-4+j8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68	8	-58 + j	11 + j73	74 <i>-j</i> 11	-80 + j	1+ <i>j</i> 8	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	69	15	48 - j12	-89 + j	-38 + j7	0	3	3-j2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70	20	36 + j20	0		58+ <i>j</i> 43	-2+j4	5+ <i>j</i>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	71	13	0	j14	8+ <i>j</i> 66	16+ <i>j</i>	0	9-j2
j41 3 3 3 3 74 8 13+j7 18 29-j68 0 4 0	72	6	5	0	8+ <i>j</i> 15	0	1+ <i>j</i>	-8
	73	1		28+ <i>j</i> 4	0	-66-j3	-2+j5	-6+j3
75 15 - <i>j</i> 55 33- <i>j</i> 99 29 61- <i>j</i> 51 0 - <i>j</i> 4	74	8	13 + j7	18	29 <i>–j</i> 68	0	4	0
	75	15	<i>−j</i> 55	33 <i>–j</i> 99	29	61 <i>-j</i> 51	0	- <i>j</i> 4

<u>Z</u> 1, Ом	<u>Z</u> 2, Ом	<u>Z</u> 3, Ом	<u>Z</u> 4, Ом	<u>Z</u> 5, Ом	<u>Z</u> 6, Ом	<u>Z</u> 7, Ом	Воль т- метр: точ- ки	<i>f</i> , Гц	ΜЭ Γ: <i>Z</i> _k	Ват т- мет р:
9	10	11	12	13	1.4	15	схе- мы 16	17	18	$\frac{P}{Z_k}$
		11			14					_
0	4 <i>-j</i> 10	38+ <i>j</i> 14	-18+ <i>j</i> 3	89 – <i>j</i> 77	69 + <i>j</i> 51	11	2 – 5	135	Z_3	Z_5
-10 + j71	0	4 <i>–j</i> 93	46 <i>-j</i> 8	31+ <i>j</i> 14	40+ <i>j</i> 56	99 – j39	1 – 5	120	Z_6	Z_3
19 – <i>j</i> 38		-15+ <i>j</i> 74	-7+ <i>j</i> 92	0	88 <i>–j</i> 11	0	3 – 2	105	Z_2	Z_1
-20 + j19	58 <i>-j</i> 3	0	5+ <i>j</i> 80	39 <i>-j</i>	13 <i>–j</i> 49	27 <i>–j</i> 9	3 – 4	90	Z_4	Z_6
0	0	13+ <i>j</i> 76	-90- <i>j</i> 11	3-j33	-50+ j48	1 <i>-j</i> 98	2 – 1	75	Z_4	Z_7
18 – <i>j</i> 37	29+ <i>j</i> 14	0	56- <i>j</i> 10	21 – <i>j</i> 16	19+ <i>j</i> 51		1 – 2	60	Z_2	Z_5
0	<i>j</i> 21	-2+j4	-j73	-67+ <i>j</i> 8	4- <i>j</i> 89	0	2 – 3	45	Z_3	Z_2
51 + j73	70+ <i>j</i> 29	0	0	8+ <i>j</i> 88	-45	j6	2-5	40	Z_1	Z_6
89 + <i>j</i> 99	31 <i>–j</i> 68	-19- <i>j</i> 60	16 – j84	0	1+ <i>j</i> 52	37 <i>–j</i> 3	4-6	65	Z_1	Z_4

	•									
$\begin{vmatrix} -1+\\ j13 \end{vmatrix}$	0	37+ j22	69 + j72	42 <i>−j</i> 14	1 – <i>j</i> 1 1	12 <i>-j</i> 21	3 – 5	90	Z_5	Z_7
0	17 <i>-j</i>	90	58+ <i>j</i> 30	0	31 + <i>j</i> 81	18 <i>–j</i> 62	3 – 4	115	Z_6	Z_7
72 <i>-j</i> 13	37+ <i>j</i> 30	0	10- <i>j</i> 18	0	37	92 + <i>j</i> 58	4 – 5	140	Z_2	Z_7
50	j77	0	47	19 <i>–j</i> 71	20 <i>–j</i> 63	0	2-6	165	Z_4	Z_5
1+ <i>j</i>	0	63 - j84	9+ <i>j</i>	-j77	0	58	2 – 3	130	Z_5	Z_7
-j30	70	0	91 – <i>j</i> 35	0	19+ <i>j</i> 58	67 – <i>j</i> 71	6-2	95	Z_7	Z_2
90− <i>j</i> 67	0	58 <i>–j55</i>	0	86+ <i>j</i> 5	28 <i>-j</i> 13	76+ <i>j</i> 58	1 – 4	60	Z_3	Z_6
15+ j52	63 – <i>j</i> 22	0	67 – j55	39+ <i>j</i> 31	83 + <i>j</i> 9	<i>−j</i> 58	5 – 1	45	Z_5	Z_7
3- <i>j</i> 20	45 + j18	0	j83	37 <i>-j</i>	0	45 – <i>j</i> 14	3 – 4	90	Z_4	Z_1
0	37 <i>–j</i> 58	-j50	13 + j25	28+ <i>j</i> 70	<i>j</i> 66	0	2 – 1	135	Z_6	Z_2
0	85 + <i>j</i> 84	0	84 <i>–j</i> 9	75 – <i>j</i> 5(95 <i>–j</i> 71	74+ <i>j</i> 50	6 – 4	160	Z_5	Z_7
35+ <i>j</i> 8	35 – <i>j</i> 70	48+ <i>j</i> 70	75 – j 17	65 + j20	43 + j15	0	4 – 7	150	Z_1	Z_4
70 <i>-j</i> 31	- <i>j</i> 38	70 <i>-j</i> 15	<i>j</i> 50	78 <i>–j</i> 10	35	0	1-6	140	Z_6	Z_5
0	13 + <i>j</i> 70	24+ <i>j</i> 85	45 + j70	6+ <i>j</i> 95	0	68 + j77	2 – - 4	130	Z_2	Z_3
<i>j</i> 30	70	75	14 <i>-j</i>	0	33 <i>-j</i> 20	68	5 – 1	120	Z_3	Z_7
15+ j85	58 – j62	0	0	18 <i>-j</i>	<i>j</i> 78	13 <i>–j</i> 35	3 – 1	110	Z_2	Z_6

Номер вариан- та	Рису- нок	Ė 1, B	Ė 2, B	Ė 3, B	Ė 4, B	<i>j</i> ₁ , A	<i>j</i> ₂ , A
1	2	3	4	5	6	7	8
76	20	59 <i>–j</i> 61	51 <i>-j</i> 18	-4-j13	j99	-8+j7	0
77	10	-15+j8	2-j44	-19+j	18+ <i>j</i> 51	3 <i>-j</i> 6	7+j
78	1	68 <i>-j</i> 29	18 - j25	91 + <i>j</i> 2	44-j2	- <i>j</i> 5	1
79	10	99 <i>–j</i> 33	41 <i>-j</i> 11	-21-j	-j	-9+j	0
80	20	-66 + j3	52+ <i>j</i> 97	24+ <i>j</i> 99	4-j28	0	-8+j3
81	2	31 <i>-j</i> 5	61 – j	0	25	0	5+ <i>j</i> 4
82	7	46+ <i>j</i> 4	0	j	0	1	-8+j
83	12	0	25+ <i>j</i> 49	0	-4+ <i>j</i> 91	-9+j2	3

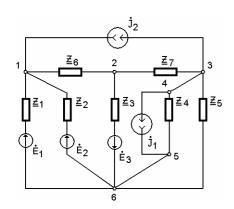
84	17	0	0	18+ <i>j</i> 6	89 <i>–j</i> 12	− <i>j</i> 7	5-j2
85	20	0	-22	-20- <i>j</i> 15	− <i>j</i> 53	6+ <i>j</i> 8	0
86	8	5	0	17- <i>j</i> 2	-78- <i>j</i> 54	-3 + j	-7+j
87	14	-j80	43 + <i>j</i> 57	28 - j8	0	4-j5	j8
88	20	-81 + j13	0	-21	j2	- <i>j</i> 9	6+ <i>j</i> 4
89	9	0	−8 <i>−j</i> 41	57+j14	-44+ <i>j</i> 45	0	-3+j3
90	16	<i>j</i> 52	0	− <i>j</i> 4	34 <i>–j</i> 99	1 + j2	6- <i>j</i> 7
91	20	85+ <i>j</i> 40	− <i>j</i> 74	-47 + j	-93 + j20	2	0
92	1	0	78+ <i>j</i> 45	35 <i>-j</i> 60	-78+ <i>j</i> 16	8+ <i>j</i> 9	-7 + j
93	2	<i>j</i> 38	0	85+ <i>j</i> 11	0	-4+j7	2-j3
94	3	7- <i>j</i> 90	25+ <i>j</i> 56	0	-74+ <i>j</i> 67	6- <i>j</i>	-8
95	4	65 - j8	55	-37	0	<i>−j</i> 3	0
96	5	-31	-17+ <i>j</i> 18	0	67 <i>–j</i> 50	2-j4	4+ <i>j</i> 6
97	6	40+ <i>j</i> 15	0	<i>j</i> 19	35 + j	<i>j</i> 9	0
98	7	0	85 <i>–j</i> 60	-80 + j20	81	-8 + j7	-3+j5
99	8	17+ <i>j</i> 30	0	12 + j63	78 <i>-j</i> 83	0	j7
100	9	93	0	54+j200	-30 + j60	0	-9+ <i>j</i>

<u>Z</u> 1, Ом	<u>Z</u> 2, Ом	<u>Z</u> 3, Ом	<u>Z</u> 4, Ом	<u>Z</u> 5, Ом	<u>Z</u> 6, Ом	<u>Z</u> 7, Ом	Воль т- метр: точ- ки схе- мы	<i>f</i> , Гц	ΜЭ Γ: <i>Z_k</i>	Ват т- мет р: <i>Z_k</i>
9	10	11	12	13	14	15	16	17	18	19
82 <i>-j</i>	0	58 – <i>j</i> 30	0	19+ <i>j</i> 5	91 + <i>j</i> 70	5+ <i>j</i> 80	5 – 1	90	Z_1	Z_7
0	-j82	0	71	0	78 <i>–j</i> 38	52 <i>-j</i> 70	1 – 8	80	Z_4	Z_7
0	0	13+ <i>j</i> 90	0	20 <i>–j</i> 78	53 + <i>j</i> 70	78 + j20	6 – 4	70	Z_7	Z_3
37 + j28	35+ <i>j</i>	45 <i>-j</i>	<i>j</i> 14	0	− <i>j</i> 67	0	3 – 7	60	Z_1	Z_2

	1	I	Ι	Ι	Ι	Ι	Ι			I
70 <i>–j</i> 8:	87 + j20	52	0	35+ <i>j</i> 38	18 <i>-j</i> 18	0	3 – 5	50	Z_3	Z_1
0	15+ j13	3 <i>-j</i> 33	j	90+ <i>j</i> 91	11+ <i>j</i> 15	99 <i>–j</i> 33	1 – 4	45	Z_7	Z_2
15+j	0	24 <i>–j</i> 99	l4- <i>j</i> 55	3+ <i>j</i> 33	90 <i>−j</i> 18	55+ j14	3 – 5	40	Z_3	Z_7
8- <i>j</i> 33	81 <i>-j</i> 4	0	l5− <i>j</i> 11	55 – <i>j</i> 14	99+ <i>j</i> 24	90 <i>–j</i> 91	3 – 5	45	Z_1	Z_7
17 <i>–j</i> 98	<i>j</i> 18	58 <i>–j</i> 91	15 <i>-j</i>	0	15	82 + <i>j</i> 13	1 – 3	50	Z_7	Z_1
24+ <i>j</i> 99	21 <i>-j</i> 13	<i>j</i> 99	28	24+ <i>j</i> 99	57+ <i>j</i> 90	0	2 – 4	55	Z_2	Z_3
11- <i>j</i> 1:	38 – <i>j</i> 27	21	0	15 <i>-j</i>	0	11+ <i>j</i> 15	1 – 3	60	Z_5	Z_7
81 + <i>j</i> 4	3 + j33	0	27 + j28	- <i>j</i> 18	33 <i>-j</i> 3	0	2-5	65	Z_6	Z_5
l 1 – j24	0	81 <i>-j</i> 4	15+j	91 + <i>j</i> 90	0	33 + <i>j</i> 99	1 – 3	70	Z_1	Z_4
<i>j</i> 28	j	-33 + j99	22 <i>-j</i> 2	0	j	18- <i>j</i> 12	4 – 1	75	Z_7	Z_6
25 + j14	24 <i>–j</i> 99	91 <i>–j</i> 90	0	12 <i>–j</i> 18	99+ <i>j</i> 33	0	4 – 1	80	Z_6	Z_1
83	0	2 <i>-j</i> 92	j65	10+j	30 <i>-j</i> 70	0	6 – 4	85	Z_1	Z_3
35 – j92	80+ j10	0	13 – <i>j</i> 2]	<i>−j</i> 15	0	52 <i>-j</i> 30	3 – 2	90	Z_2	Z_1
37 + j28	0	75 + <i>j</i> 82	28+ <i>j</i> 70	35 – <i>j</i> 37	37	28+ <i>j</i> 68	1 – 4	95	Z_5	Z_6
16 <i>–j</i> 3	10 <i>-j</i> 3	0	50-j64	60+ j85	50 <i>-j</i> 11	0	2 – 3	100	Z_6	Z_5
92 + <i>j</i> 63	54+j	3 <i>-j</i> 63	8+ <i>j</i> 70	20	0	49− <i>j</i> 18	2 – 4	110	Z_3	Z_7
-j30	90-j5(0	13 <i>-j</i> 15	0	75 + <i>j</i> 60	<i>j</i> 43	2-4	150	Z_7	Z_2
18 – <i>j</i> 4:	j38	68+ <i>j</i> 45	− <i>j</i> 23	52 <i>–j</i> 63	38 <i>-j</i> 7	0	6-2	155	Z_1	Z_5
52+ <i>j</i> 13	32 + <i>j</i> 90	31 – <i>j</i> 20	62 + j38	0	0	37+ <i>j</i>	3 – 5	160	Z_4	Z_2
34 <i>-j</i> 20	53 – <i>j</i> 37	60+j	38 <i>-j</i> 5	73 + <i>j</i> 17	<i>−j</i> 75	0	1 – 2	165	Z_6	Z_1
- <i>j</i> 90	-j	0	70+ <i>j</i> 10	48 <i>−j</i> 13	65 + j10	53	1 – 6	170	Z_4	Z_5

Номер вариан- та	Рису- нок	Ė 1, B	Ė 2, B	Ė 3, B	Ė 4, B	<i>j</i> ₁ , A	<i>j</i> ₂ , A
1	2	3	4	5	6	7	8
101	10	8	0	-8+j30	20-j30	-9+j8	-3+j2
102	11	32 + j78	0	44+ <i>j</i> 32	<i>j</i> 33	j8	0
103	12	-99 + j3	8+ <i>j</i> 90	<i>j</i> 44	9- <i>j</i> 88	0	<i>j</i> 5
104	13	4+ <i>j</i> 5	88	-5	0	<i>−j</i> 5	4+ <i>j</i> 2
105	14	-55 + j4	99 <i>-j</i> 3	0	42-j3	8	2- <i>j</i> 6
106	15	-85+ <i>j</i> 44	0	− <i>j</i> 44	45- <i>j</i> 3	5+ <i>j</i> 6	-2
107	16	0	j90	47+ <i>j</i> 8	50- <i>j</i> 6	-6+j3	-3 + j5
108	17	33 + j5	0	66+ <i>j</i> 99	90	j2	j3
109	18	6 - j40	-50 + j5	0	− <i>j</i> 33	0	-4-j5
110	19	- <i>j</i> 45	99 <i>–j</i> 99	77	0	-4+j3	3
111	20	j44	55 – <i>j</i> 2	33	0	− <i>j</i> 5	0
112	4	92 <i>-j</i> 3	43 - j2	0	-j8	0	j8
113	13	94+ <i>j</i> 80	j64	-63	42+ <i>j</i> 5	-5+j6	0
114	5	0	- <i>j</i> 44	33 - j3	20 + j78	6	4-j3
115	14	0	− <i>j</i> 8	32 + j6	6 - j40	<i>−j</i> 3	9
116	6	62 + j42	0	− <i>j</i> 55	52+ <i>j</i> 8	-4+j6	0
117	19	85 <i>-j</i> 15	42	0	41 + j20	3-j8	-5
118	20	- <i>j</i> 33	-85 - <i>j</i> 72	<i>j</i> 55	0	<i>j</i> 6	-2+j7
119	18	42 <i>-j</i> 47	85 <i>-j</i> 72	72+ <i>j</i> 85	0	-8	j7
120	1	-31 + j15	0	99+ <i>j</i> 9	88	- <i>j</i> 9	9- <i>j</i> 9
121	16	32 + j7	85 <i>-j</i> 3	0	77 + j85	-2	<i>−j</i> 3
122	11	11 <i>–j</i> 99	44+ <i>j</i> 32	0	-j82	9+ <i>j</i> 8	0
123	17	90- <i>j</i> 8	40 + j3	j43	0	j	6- <i>j</i> 5
124	3	81+ <i>j</i> 67	0	44 - j80	50- <i>j</i> 43	-9 + j9	-3-j4
125	7	<i>j</i> 70	- <i>j</i> 51	66	0	5-j2	4

<u>Z</u> 1, Ом	<u>Z</u> 2, Ом	<u>Z</u> 3, Ом	<u>Z</u> 4, Ом	<u>Z</u> 5, Ом	<u>Z</u> 6, Ом	<u>Z</u> 7, Ом	Воль т- метр: точ- ки схе- мы		ΜЭ Γ: <i>Z_k</i>	Ват т- мет р: <i>Z_k</i>
-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	---	--	----------------------------------	--


9	10	11	12	13	14	15	16	17	18	19
0	32+ <i>j</i> 5	81 + <i>j</i> 50	0	50 <i>–j</i> 81	33 <i>–j</i> 40	5- <i>j</i> 80	7 – 2	165	Z_5	Z_2
32 + j5	55	- <i>j</i> 34	¥1− <i>j</i> 3(10 <i>–j</i> 33	44	0	3 – 5	150	Z_3	Z_1
0	52+ j32	4 <i>-j</i> 33	15+ j12	22 – j29	0	j8	5-2	145	Z_4	Z_7
9 - j30	0	8-j2	j47	4+ <i>j</i> 33	3 + j44	0	1 – 6	130	Z_3	Z_6
44 <i>-j</i> 3	5 – <i>j</i> 41	29 - j22	0	2-j8	15 <i>-j</i> 12	0	1 – 3	115	Z_1	Z_5
- <i>j</i> 80	10+ <i>j</i> 9	52 <i>-j</i> 32	20+ j30	0	0	33 <i>-j</i> 4	1 – 3	100	Z_3	Z_1
0	12 <i>-j</i> 15	41 <i>–j</i> 5	30	<i>j</i> 81	5+ <i>j</i> 41	0	1 – 2	90	Z_2	Z_3
32 <i>-j</i> 57	<i>j</i> 25	0	44+ <i>j</i> 3	12+ <i>j</i> 15	0	8- <i>j</i> 2	1 – 3	75	Z_5	Z_4
99	3 – <i>j</i> 44	30+ j20	32 + <i>j</i> 57	0	- <i>j</i> 99	41 + <i>j</i> 5	1 – 4	60	Z_3	Z_7
0	8+ <i>j</i> 2	50	33 + j4	30 <i>-j</i> 20	0	40	5 – 3	45	Z_7	Z_5
25	41 + <i>j</i> 4	10+ <i>j</i> 10	j80	0	<i>j</i> 48	<i>j</i> 44	6 – 4	40	Z_1	Z_6
j42	89 <i>–j</i> 3	55 <i>-j</i> 3	0	99+ <i>j</i> 33	33 <i>-j</i> 4	12- <i>j</i>	1 – 5	60	Z_7	Z_2
¥1 − <i>j</i> 99	9 <i>–j</i> 88	70	0	0	81 + <i>j</i> 80	- <i>j</i> 70	2-5	80	Z_3	Z_6
0	5+ <i>j</i> 88	4+ <i>j</i> 80	- <i>j</i> 43	88	88 – <i>j</i> 3	0	1 – 3	100	Z_4	Z_3
4- <i>j</i> 50	99+j	<i>j</i> 32	4- <i>j</i> 80	0	0	45 + j55	1 – 4	120	Z_3	Z_7
8+ <i>j</i> 9	55 <i>-j</i> 8	53 <i>–j</i> 78	0	3-j	46	34 <i>-j</i> 19	1 – 4	110	Z_1	Z_5
0	10	0	35 – <i>j</i> 15	25 – j26	- <i>j</i> 3	99 <i>–j</i> 80	1 – 4	130	Z_4	Z_6
43 + <i>j</i> 99	0	− <i>j</i> 78	80 <i>-j</i> 3	29 <i>–j</i> 8	99 – <i>j</i> 99	0	3 – 6	150	Z_3	Z_1
30 – <i>j</i> 20	0	33 <i>-j</i>	99	4- <i>j</i> 3	0	72	3 – 5	170	Z_4	Z_5
41 + <i>j</i> 33	0	18 <i>-j</i> 50	0	5- <i>j</i> 8	3 – <i>-j</i> 99	<i>j</i> 99	4 – 6	130	$\overline{Z_6}$	Z_7
43 <i>-j</i> 5	99 – j39	35 – <i>j</i> 99	0	11+ <i>j</i> 10	- <i>j</i> 85	0	2-4	125	Z_5	Z_1
71	l0- <i>j</i> 11	30 - j4	5	3 – <i>j</i> 29	0	- <i>j</i> 81	3 – 5	120	Z_3	Z_2
0	42+ <i>j</i> 9	33	0	35 <i>-j</i> 40	4 <i>-j</i> 30	l 1 – <i>j</i> 1 (3 – 4	125	Z_2	Z_3
0	0	j89	52+ j30	- <i>j</i> 31	99	85 + <i>j</i> 99	1 – 2	115	$\overline{Z_5}$	Z_6
99+ <i>j</i> 85	- <i>j</i> 66	0	0	1 – <i>j</i> 80	3+ <i>j</i> 29	4+ <i>j</i> 85	1 – 2	110	Z_1	Z_5

Номер вариан- та	Рису- нок	Ė 1, B	Ė 2, B	Ė 3, B	Ė 4, B	<i>j</i> ₁ , A	<i>j</i> ₂ , A
1	2	3	4	5	6	7	8
126	2	77 – <i>j</i> 4	30 - j22	41 + <i>j</i> 30	33 + j15	6+ <i>j</i> 7	0
127	8	4- <i>j</i> 90	80 – <i>j</i> 4	0	0	- <i>j</i> 8	-4+j5
128	10	0	20 + j25	-99+j8	0	7-j3	2+ <i>j</i> 4
129	9	70	j5	4+ <i>j</i> 55	0	-6 + j7	-4+j3
130	18	81 <i>-j</i> 95	30 + j40	42 - j43	0	2+ <i>j</i> 8	3
131	12	7	0	10 - j50	85	3	5-j3
132	4	1+ <i>j</i> 59	30 + j30	3 – <i>j</i> 4	79 <i>–j</i> 27	-j8	7
133	13	0	33	-j77	12+ <i>j</i> 35	2+ <i>j</i> 9	2+ <i>j</i>
134	5	70 <i>-j</i> 50	-15 + j80	0	- <i>j</i> 86	-1+j7	0
135	14	- <i>j</i> 43	0	81+ <i>j</i> 15	0	6-j3	<i>j</i> 5
136	6	0	-4-j13	-8	-5-j	j2	3-j2
137	19	-95	0	-68+ <i>j</i> 54	10+ <i>j</i> 10	0	-5+j7
138	2	-20- <i>j</i> 34	47 <i>–j</i> 99	–14 <i>–j</i> 3	0	-9- <i>j</i> 8	- <i>j</i> 9
139	15	-21 + j67	38+ <i>j</i> 72	14	0	1	0
140	1	55	-88	j99	19 <i>–j</i> 13	0	-6-j4
141	16	13+ <i>j</i> 90	j4	15	-17 + j12	0	1
142	11	28+ <i>j</i> 14	0	-30- <i>j</i> 30	45+ <i>j</i> 50	j3	-8-j7
143	17	0	33 <i>-j</i> 60	- <i>j</i> 99	10-j12	0	5+ <i>j</i> 2
144	3	57	0	71 + <i>j</i> 80	j80	-6+j6	− <i>j</i> 7
145	7	-64-j2	53 + <i>j</i> 91	85	17- <i>j</i> 11	-9	0
146	20	- <i>j</i> 81	0	79 <i>–j</i> 15	51 + <i>j</i> 47	0	2+ <i>j</i> 9
147	8	77+j77	31	0	-55- <i>j</i> 13	-7-j	1- <i>j</i> 3
148	10	-34- <i>j</i> 49	0	5+ <i>j</i> 2	47+ <i>j</i>	-1+ <i>j</i> 8	9+ <i>j</i> 4
149	9	0	9+ <i>j</i> 88	-57- j99	60	0	4
150	18	12 - j10	0	2	1+ <i>j</i>	j5	-8+j7

<u>Z</u> 1, Ом	<u>Z</u> 2, Ом	<u>Z</u> 3, Ом	<u>Z</u> 4, Ом	<u>Z</u> 5, Ом	<u>Z</u> 6, Ом	<u>Z</u> 7, Ом	Воль т- метр: точ- ки схе- мы	<i>f</i> , Гц	МЭ Г: <i>Z_k</i>	Ват т- мет р: <i>Z</i> _k
9	10	11	12	13	14	15	16	17	18	19
0	29+ <i>j</i> 3	80 <i>-j</i>	<i>j</i> 81	40	0	4+ <i>j</i> 30	1 – 4	105	Z_2	Z_5
- <i>j</i> 41	1 + j80	0	42 <i>-j</i> 9	39 – <i>j</i> 99	52 <i>-j</i> 30	80+j	1 – 5	100	Z_7	Z_4
10+ <i>j</i> 11	0	29 <i>–j</i> 3	30 <i>-j</i> 52	85 <i>–j</i> 99	<i>j</i> 43	9	4 – 8	95	Z_7	Z_6
30+ <i>j</i> 52	69	- <i>j</i> 9	0	30+ <i>j</i> 4	0	9 <i>–j</i> 42	1 – 5	85	Z_2	Z_1
4- <i>j</i> 85	0	9+ <i>j</i> 42	- <i>j</i> 33	j8	85 + <i>j</i> 4	0	2-5	80	Z_4	Z_5
0	0	<i>j</i> 10	5+ <i>j</i> 2	18	50 - j70	50-j2	2 - 4	40	Z_4	Z_7
30	11 <i>-j</i> 7	0	5 – <i>j</i> 99	99+ <i>j</i> 87	0	0	3 – 4	45	Z_1	Z_5
0	j64	18 <i>-j</i> 94	4 + j40	0	13	2-j88	7 – 8	55	Z_6	Z_3
8- <i>j</i> 7	99	17 – <i>j</i> 79	0	63 + <i>j</i> 17	-j93	0	1 – 4	70	Z_3	Z_6
22	0	31+ <i>j</i> 63	2- <i>j</i> 7	<i>j</i> 52	71 + <i>j</i> 30	19	1 – 3	75	Z_4	Z_1
0	<i>−j</i> 78	39	14 <i>-j</i> 87	58 <i>-j</i> 10	0	88+ <i>j</i> 5	3 – 6	80	Z_4	Z_7
9+ <i>j</i> 99	51 – <i>j</i> 80	<i>j</i> 97	26	0	51 <i>-j</i>	- <i>j</i> 11	1 – 4	130	Z_1	Z_4
0	35+ <i>j</i> 91	32 <i>-j</i> 20	65 <i>–j</i> 5	81	0	12+ <i>j</i> 12	2 – 5	135	Z_4	Z_5
10 <i>-j</i> 11	13+ <i>j</i> 83	42	32+ <i>j</i> 51	35 – <i>j</i> 20	-j77	0	4 – 3	150	Z_1	Z_2
0	37	11+ <i>j</i> 98	19 <i>–j</i> 4	j87	0	20+j	2-6	170	Z_5	Z_7
<i>j</i> 99	0	0	l1− <i>j</i> 11	15+ <i>j</i> 90	40 <i>-j</i> 5	17	2 – 1	150	Z_1	Z_4
0	8-j2,5	71 + <i>j</i> 41	0	21 <i>–j</i> 55	65 + <i>j</i> 99	88 <i>–j</i> 71	3 – 5	100	Z_7	Z_5
75 – j68	0	38	59+ <i>j</i> 31	− <i>j</i> 51	14 <i>-j</i> 12	30+ <i>j</i> 82	1 – 3	50	Z_3	Z_1
0	43 + j18	59 <i>–j</i> 71	24- <i>j</i>	7	0	55 – j55	1 – 4	30	Z_7	Z_3
10	52 <i>-j</i> 4	0	7 <i>–j</i> 93	94+ <i>j</i> 57	49+ <i>j</i> 10	0	1 – 5	35	Z_1	Z_4
86-j15	38	12 <i>–j</i> 66	-j20	<i>4−j</i> 2	0	22 + j88	4-2	50	Z_7	Z_5
<i>j</i> 31	34 <i>-j</i> 5(0	58+	0	84,5	1+j	1 – 3	100	Z_1	Z_4

			<i>j</i> 90							
44 <i>-j</i>	0	32 <i>–j</i> 33	89+ <i>j</i> 91	25- <i>j</i> 2	0	59	4 – 5	150	Z_4	Z_5
67+ <i>j</i> 13	3- <i>j</i> 9	66+ <i>j</i> 64	17 <i>–j</i> 27	89+j	77	0	3 – 5	170	Z_3	Z_2
23 <i>-j</i> 13	0	58+ <i>j</i> 59	5	17 <i>–j</i> 67	0	15 <i>-j</i>	1 – 6	80	$\overline{Z_1}$	Z_7

Электрические схемы К РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 1

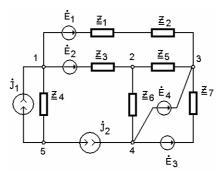
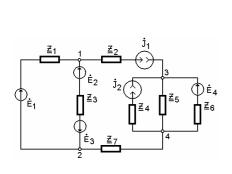



РИС. 1.1

РИС. 1.2

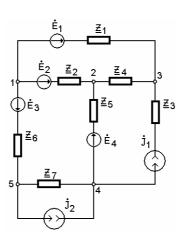
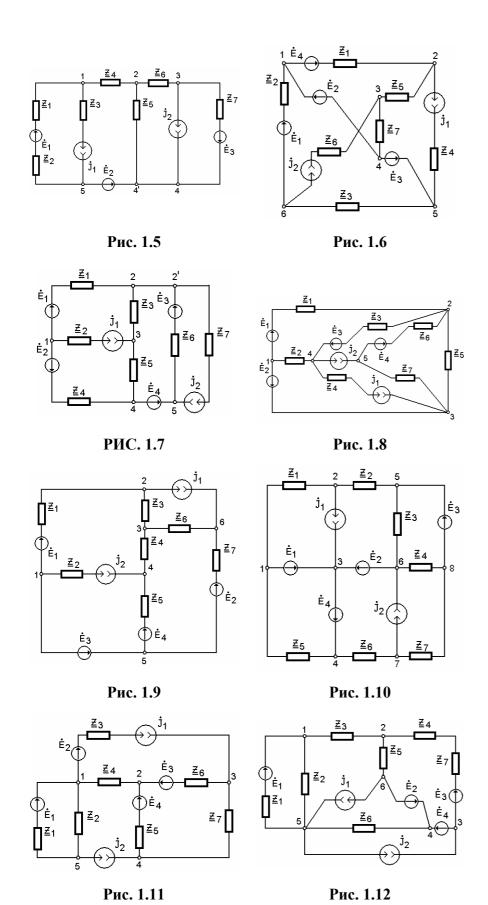
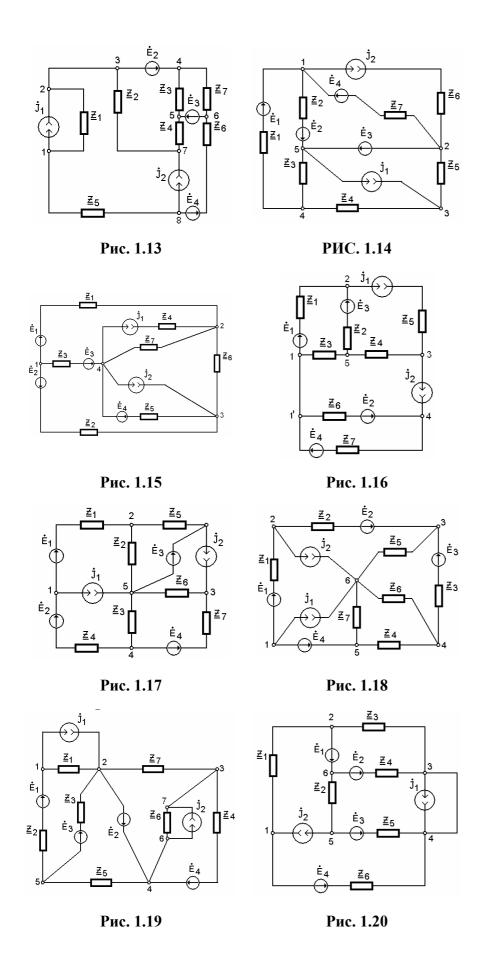




Рис. 1.3

Рис. 1.4

Приложения

Формат А4		
	во образования Российской сударственный технически	
Кафедра «Э	лектрооборудование и авто	матизация»
РАСЧЕТ	ГНО-ГРАФИЧЕСКАЯ РАБО ПО ЭЛЕКТРОТЕХНИКЕ	OTA
« <u> </u>	Название работы	»
	название раооты	
	Вариант	
Выполнил(а):	студент(ка)	группы
ФИО		
Проверил:		преподаватель
ФИО		
	Тамбов 20 г.	

Приложение 2

РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ 1

Пункт 1

- 1 Для электрических цепей постоянного тока параметры элементов рассчитываются по формулам: a) для источников эдс: $E_k = \sqrt{(\mathrm{Re}\,\dot{E}_k)^2 + (\mathrm{Im}\,\dot{E}_k)^2}$;

б) для источников тока:

$$J_k = \sqrt{\left(\operatorname{Re} J_k\right)^2 + \left(\operatorname{Im} J_k\right)^2} \; ;$$

в) для сопротивлений резисторов: $R_k = \sqrt{(\text{Re}\,\underline{Z}_k)^2 + (\text{Im}\,Z_k)^2} \ .$

$$R_k = \sqrt{\left(\text{Re}\underline{Z}_k\right)^2 + \left(\text{Im}\underline{Z}_k\right)^2}$$

- 2 Для цепей синусоидального тока согласно заданию.
- Исходные данные для выполнения РГР 1 заданы в алгебраической форме. Для перехода к показательной форме комплексного числа от алгебраической используются формулы перехода:

 $\dot{A} = A' + jA''$ (алгебраическая форма);

$$A = |\dot{A}| = \sqrt{(A')^2 + (A'')^2}$$
;

$$\arg \dot{A} = \psi_A = \operatorname{arctg} \frac{A''}{A'}$$
, если $A' > 0$;

$$\arg \dot{A} = \psi_A = \operatorname{arctg} \frac{A''}{A'} + 180^{\circ}$$
, если $A' < 0$.

Тогда справедливо

$$\dot{A} = A' + jA'' = Ae^{j\psi_A},$$

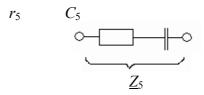
где A — рассматриваемая электрическая величина (или ток, или напряжение и т.д.).

Необходимо обратить внимание на обозначение комплексных чисел: если последнее отображает функцию времени, то над комплексным числом ставится точка. Это относится к току, напряжению, эдс, потенциалу и т.д. Комплексное же сопротивление является фиксированным комплексным числом, поэтому его изображают с чертой снизу (Z).

б) Расчет параметров r – активного сопротивления, L – индуктивности и C – емкости по заданным в алгебраической форме комплексных сопротивлений производится следующим образом:

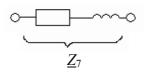
активное сопротивление

$$r_k = \text{Re } \underline{Z}_k;$$


индуктивное сопротивление

$$L_k = \frac{\operatorname{Im} \underline{Z}_k}{2\pi f}$$
, если $\operatorname{Im} \underline{Z}_k > 0$; f – заданная частота;

емкостное сопротивление


$$C_k = \frac{1}{2\pi f \text{Im } Z_k}$$
, если Im $Z_k < 0$.

в) Перед вычерчиванием исходной схемы в развернутом виде необходимо для каждого комплексного сопротивления, взятого из табл. 1.1, вычертить схему замещения. Она зависит от вида алгебраической формы. Если, например, $Z_5 = 6 - i4$, то схема замещения Z_5 имеет вид

Если, например, $Z_7 = 4 + j3$, то

$$r_7$$
 L_7

После проведенного анализа состава комплексных сопротивлений вычерчивают требуемую схему замещения.

Пункт 2

- 1 Для цепей постоянного и синусоидального токов при составлении системы уравнений по законам Кирхгофа необходимо повторить лекционный материал, в которых рассматриваются методы расчета линейных электрических цепей. Основные моменты составления системы уравнений таковы:
- а) определяют общее число ветвей схемы p; число ветвей с источником тока $p_{\scriptscriptstyle \rm T}$ и число узлов схемы q;
- б) число неизвестных и искомых токов равно $(p p_{\scriptscriptstyle T})$; их наносят над ветвями схемы в произвольном направлении;
- в) по первому закону Кирхгофа составляют узловые уравнения для любых (q-1) узлов схемы, причем со знаком «плюс» берутся токи, подходящие к узлу, вытекающие из узла со знаком «минус».
- г) недостающие $[(p-p_{\scriptscriptstyle T})-(q-1)]$ уравнения составляются по второму закону Кирхгофа это контурные уравнения. Для их составления целесообразно выбрать единое направление обхода контуров, например, по часовой стрелке. Напряжения или падения напряжений берутся со знаком «плюс», если положительный ток совпадает по направлению с направлением обхода, в противном случае со знаком «минус». Аналогично составляется и алгебраическая сумма для эдс контура.

При выборе контуров необходимо руководствоваться следующим правилом – новый контур должен содержать хотя бы одну новую ветвь схемы. Обычно сначала используют независимые контуры (ячей-ки) схемы.

Если в схеме присутствует ветвь с источником тока, то она контура не образует, так как проводимость источника тока равна нулю. В такой ветви ток уже известен, и он учитывается лишь при составлении узловых уравнений.

2 При составлении системы интегрально—дифференциальных уравнений необходимо помнить связь между мгновенными значениями токов и напряжений на r-, L- и C-элементах:

для r-элемента: $u_r = i r$;

для L-элемента: $u_L = L \frac{di}{dt}$;

для C-элемента: $u_C = \frac{1}{C} \int i dt$;

Поэтому сначала целесообразно составить систему уравнений по законам Кирхгофа через мгновенные напряжения, а затем перейти к уравнениям через мгновенные токи.

Для записи интегрально-дифференцированных уравнений в символической форме необходимо помнить связь между комплексными напряжениями на пассивных элементах и соответствующими то-ками:

$$\dot{U}_r = r\dot{I}; \quad \dot{U}_L = jx_L\dot{I}; \quad \dot{U}_C = -jx_C\dot{I} \ .$$

Пункт 3

1 Согласно методу контурных токов (МКТ) в рассмотрение вводятся фиктивные (расчетные) токи, замыкающиеся в каждом отдельном контуре. Искомые токи определяются как алгебраическая сумма контурных токов в данной ветви схемы: контурные токи, совпадающие по направлению с искомым током, берутся со знаком «плюс», в противном случае — со знаком «минус».

По МКТ система уравнений составляется автоматически и только по второму закону Кирхгофа. Она имеет вил:

$$\begin{cases} \underline{Z}_{11}\dot{I}_{11} & + & \underline{Z}_{12}\dot{I}_{22} & + & \dots & + & \underline{Z}_{1n}\dot{I}_{nn} & = & \dot{E}_{11}; \\ \underline{Z}_{21}\dot{I}_{11} & + & \underline{Z}_{22}\dot{I}_{22} & + & \dots & + & \underline{Z}_{1n}\dot{I}_{nn} & = & \dot{E}_{22}; \\ \dots & \dots \\ \underline{Z}_{n1}\dot{I}_{11} & + & \underline{Z}_{n2}\dot{I}_{22} & + & \dots & + & \underline{Z}_{nn}\dot{I}_{nn} & = & \dot{E}_{nn}. \end{cases}$$

где n — число контуров.

Чтобы правильно расставить знаки перед слагаемыми левой части, рекомендуется все контурные токи направлять в одну сторону, например, по часовой стрелке. Тогда произведение общего или взаимного сопротивления на ток ($Z_{\kappa p} \dot{I}_{t}$) берется со знаком «плюс», если контурные токи рассматриваемых контуров совпадают по направлению, в противном случае — со знаком «минус». Произведение собственных сопротивлений на соответствующий контурный ток всегда берется со знаком плюс ($Z_{t}\dot{I}_{t}$).

Правая часть системы представляет собой контурные эдс, которые равны алгебраической сумме всех эдс контура. Причем, со знаком плюс берутся те эдс, которые совпадают с направлением контурного тока.

Если исходная система содержит ветвь источника тока, то это известный ток, его считают контурным, и через эту ветвь другие контурные токи не замыкаются. В этом случае число уравнений сокращается на число ветвей с источником тока.

2 По методу узловых потенциалов (МУП) составляются узловые уравнения, число которых равно (q-1). При этом один из узлов схемы «заземляется», и его потенциал считается равным нулю (базисный узел), а для (q-1) узлов составляется, также автоматически, система:

$$\begin{cases} & \underline{Y}_{11}\dot{\phi}_1 & - & \underline{Y}_{12}\dot{\phi}_2 & - & \dots & - & \underline{Y}_{1(q-1)}\dot{\phi}_{(q-1)} & = & \dot{J}_{11}; \\ - & \underline{Y}_{21}\dot{\phi}_1 & + & \underline{Y}_{22}\dot{\phi}_2 & - & \dots & - & \underline{Y}_{2(q-1)}\dot{\phi}_{(q-1)} & = & \dot{J}_{22}; \\ & \dots \\ - & \underline{Y}_{(q-1)1}\dot{\phi}_1 & - & \underline{Y}_{(q-1)2}\dot{\phi}_2 & - & \dots & + & \underline{Y}_{(q-1)(q-1)}\dot{\phi}_{(q-1)} & = & \dot{J}_{(q-1)(q-1)}. \end{cases}$$

Поэтому рекомендуется делать базисным узлом узел с последним порядковым номером, чтобы не было в дальнейшем путаницы.

Так как в системе присутствуют проводимости и узловые токи, то, желательно, исходную систему перечертить, заменив в них, если это возможно, источники эдс на источники тока, а сопротивления – на проводимости, используя формулы перехода для реальных источников электрической энергии

$$\dot{I}_k = \frac{\dot{E}_k}{Z_k} = \dot{E}_k \underline{Y}_k \; ; \qquad \underline{Y}_k = \frac{1}{Z_k} \; .$$

Узловая проводимость \underline{Y}_{tt} является арифметической суммой всех проводимостей ветвей, сходящихся в данном t-ом узле. Общая проводимость $\underline{Y}_{tm} = \underline{Y}_{mt}$ между узлами t и m является арифметической суммой проводимостей всех ветвей, соединяющих указанные узлы. Произведения вида $\underline{Y}_{tt}\dot{\phi}_t$ берутся со знаком «плюс», а $\underline{Y}_{tm}\dot{\phi}_n$ — со знаком «минус».

Правая часть системы — это узловые токи, представляющие собой алгебраическую сумму токов от источников тока в ветвях, и сходящихся в рассматриваемом узле: со знаком «плюс» берутся те токи, которые направлены к узлу схемы, в противном случае — со знаком «минус».

Если некоторая ветвь схемы содержит только источник эдс, который нельзя преобразовать в эквивалентный источник тока, то задача расчета упрощается. В этом случае один из узлов схемы, между которым включена такая ветвь, выбирается базисным, а второй узел будет иметь потенциал, равный эдс с точностью до знака. Следовательно, число уравнений приведенной системы сокращается на число ветвей, содержащих только источники эдс.

После определения значений искомых потенциалов расчет неизвестных токов исходной схемы про-изводится по обобщенному закону Ома.

Пункт 4

Сравнив число уравнений, составленных по методу уравнений Кирхгофа, МКТ и МУП, выбрать метод, который отличается их наименьшим количеством. Если в системах число уравнений одинаково, то расчет токов схемы произвести любым из рассматриваемых методов.

Пункт 5

Ток в заданной ветви схемы по методу эквивалентного генератора (МЭГ) рассчитывается в следующей последовательности:

- а) вычерчиваются две вспомогательные схемы: одна для расчета напряжения холостого хода активного двухполюсника $\dot{U}_{xx} \equiv \dot{E}_{gr}$; вторая для определения входного сопротивления \underline{Z}_{Bx} пассивного двухполюсника, получаемого из первого исключением источников эдс (их место на схеме закорачивается) и источников тока (на их месте в схеме образуется разрыв);
 - б) для определения \dot{U}_{xx} используется любой известный метод расчета электрических цепей;
 - в) для определения $Z_{\text{вх}}$ используется метод эквивалентных преобразований схемы;
- г) после определения $\dot{U}_{\rm xx}$ и $Z_{\rm Bx}$ рассчитывают искомый ток по формуле

$$\dot{I}_k = \frac{\dot{U}_{xx}}{Z_{xx} + Z_k} .$$

Пункт 6

1 Для цепей постоянного тока уравнение баланса мощностей имеет вид

$$\sum P_{\text{uct}} = \sum P_{\text{np}} ,$$

где $\sum P_{\text{ист}}$ — алгебраическая сумма мощностей всех источников электрической энергии рассматриваемой схемы; $\sum P_{\text{пр}}$ — арифметическая сумма мощностей всех пассивных элементов, т.е. приемников.

Расчет $\sum P_{\text{пр}}$ производится по формуле

$$\sum P_{\rm np} = \sum I_k^2 R_k \ ,$$

где I_k и R_k – ток и сопротивление k-го приемника соответственно.

Сумму мощностей источников электрической энергии разделены на суммы мощностей источников эдс и источников тока

$$\sum P_{\text{MCT}} = \sum P_2 + \sum P_{\text{T}},$$

Сумма $\sum P_9$ определяется по формуле

$$\sum P_{\scriptscriptstyle 9} = \sum I_k E_k \ ,$$

где I_k — ток в ветви, содержащей эдс E_k , причем со знаком «плюс» берется то произведение, где ток и эдс совпадают; при противоположных направлениях тока и источника ставится знак «минус».

Если указанное произведение положительно, то источник эдс является генератором, в противном случае — приемником, имеющим противо-эдс.

Сумма $\sum P_{\scriptscriptstyle T}$ определяется по формуле

$$\sum P_{\scriptscriptstyle \rm T} = \sum J_k U_k \ ,$$

где U_k – напряжение на источнике тока, т.е. от «плюса» к «минусу» на внешнем участке цепи.

В случае обращения баланса мощностей в тождество расчет токов схемы произведен правильно.

2 Для цепи синусоидального тока уравнение баланса мощностей имеет вид

$$\sum \underline{S}_{\text{uct}} = \sum \underline{S}_{\text{np}} \; ,$$

где $\underline{S}_{{\tt uct}_k}$ и $\underline{S}_{{\tt np}_k}$ – комплексные мощности.

Левая часть уравнения определяется по формуле

$$\sum \underline{S}_{\text{uct}} = \sum \underline{S}_{\text{3}} + \sum \underline{S}_{\text{T}} = \sum \dot{E}_{k} I_{k}^{*} + \sum \dot{U}_{t} I_{t}^{*},$$

где \dot{E}_k и \dot{U}_t — соответствующие комплексные эдс и напряжения на источниках тока; I_k , I_t — сопряженные токи рассматриваемой ветви и источника тока.

Правая часть уравнения определяется по формуле

$$\sum \underline{S}_{\rm np} = \sum I_k^2 \underline{Z}_k ,$$

где I_k^2 – квадрат модуля тока ветви схемы, содержащей комплексное сопротивление \underline{Z}_k .

Пункт 7

1 Вольтметр в цепи постоянного тока покажет напряжение

$$U_{ab} = \varphi_a - \varphi_b$$

где a и b – точки подключения вольтметра.

Поэтому задача определения показаний вольтметра сводится к определению разности потенциалов точек схемы, т.е. напряжения.

- 2 Вольтметр в цепи синусоидального тока покажет действующее значение напряжения $\dot{U}_{ab} = \dot{\phi}_a \dot{\phi}_b$, т.е. модуль комплексного напряжения. Поэтому, произведя расчет $\dot{\phi}_a \dot{\phi}_b$ любым способом, необходимо представить это напряжение в показательной форме: коэффициент при экспоненте и есть показания вольтметра.
- 3 Включение вольтметра показать на исходной схеме.

Пункт 8

1 В электрических цепях постоянного тока строят потенциальную диаграмму – график распределения потенциала вдоль какого-либо участка цепи или замкнутого контура, т.е. зависимость $\varphi(R)$. По оси абсцисс на нем откладывается сопротивление вдоль контура, начиная с какой-либо произвольной точки, по оси ординат – потенциалы. Следовательно, каждой точке замкнутого контура соответствует своя точка на потенциальной диаграмме.

Для построения потенциальной диаграммы необходимо использовать значения токов, полученных в п. 4 задания, выбрать базисную точку, потенциал которой приравнивается нулю, и определиться с масштабными сетками по осям координат. Далее необходимо определиться с направлением обхода контура, при этом желательно двигаться навстречу току.

Если определяется потенциал точки m относительно потенциала точки n контура и на пути встречается сопротивление R_k с током I_k , то потенциал точки m равен

$$\varphi_m = \varphi_n + I_k R_k,$$

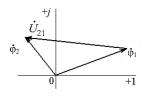
где падение напряжения $I_k R_k$ берется со знаком «плюс» в том случае, если обход совершается против тока (в этом состоит отличие от условия составления уравнений по второму закону Кирхгофа).

В противном случае $I_k R_k$ берется со знаком «минус».

Если между точками m и n встречается источник эдс, то

$$\varphi_m = \varphi_n + E_k$$
.

Электродвижущая сила E_k берется со знаком «плюс», если положительное направление эдс совпадает с выбранным направлением обхода контура для построения потенциальной диаграммы, в противном случае E_k берется со знаком «минус».


При правильном построении диаграммы значение потенциала базисной точки должно получиться равным нулю после обхода контура.

2 Для электрических цепей синусоидального тока строят векторную топографическую диаграмму, совмещенную с векторной диаграммой токов на комплексной плоскости.

Под топографической диаграммой понимают график распределения комплексных потенциалов для контура схемы, изображенного на комплексной плоскости $(+1\ 0\ +j)$. Если отрезкам графика задать соответствующие направления, согласно правилам сложения векторов, то получают векторную топографическую диаграмму напряжений. Действительно, потенциал на комплексной плоскости можно задать радиус-вектором

(рис. $\Pi 2.1$), тогда по определению напряжение \dot{U}_{12} равно $\dot{U}_{12} = \dot{\varphi}_1 - \dot{\varphi}_2$. Если известны $\dot{\varphi}_1$ и \dot{U}_{12} , то $\dot{\phi}_2 = \dot{\phi}_1 - \dot{U}_{12} = \dot{\phi}_1 + \dot{U}_{21}$, где $\dot{U}_{21} = -\dot{U}_{12}$.

Первый индекс у напряжения на векторной топографической диаграмме указывает, к какой точке следует направить стрелку вектора напряжения. На электрической схеме этот вектор имеет противоположное направление. Поэтому, для построения векторной топографической диаграммы напряжений, следует выбрать базисную точку контура, задать масштабы по току $(m_i, A/MM)$ и напряжению $(m_u, A/MM)$ В/мм), знать токи в ветвях контура и выбрать направление обхода контура. Далее рассчитывают потенциалы выбранных точек контура, наносят их на комплексную плоскость и соединяют последовательно отрезками прямых. Отрезкам придают необходимые направления (это и будут векторы напряжений) и ставят им схемы, соответствие векторы напряжений на элементах учитывая (рис. П2.2). Затем строят векторы токов и производят графический анализ правильности расчета токов и напряжений для заданного контура схемы.

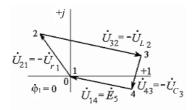


Рис. П2.1 Пункт 9

РИС. П2.2

Для измерения активной мощности в цепях синусоидального тока используют ваттметр электродинамической системы. Его включают между источником и приемником электрической энергии. Направления тока и напряжения на приборе отсчитываются от генераторных точек, обозначенных на схеме звездочками «*». Ваттметр – полярный прибор, который реагирует на углы сдвига фаз между током и напряжением, заданными на контролируемом участке схемы. Поэтому, если расчет дает отрицательное значение измеряемой мощности, необходимо указать на включение кнопки изменения полярности при-

В задании требуется определить показания ваттметра через выражение для комплексной мощности, которое равно

$$\underline{S} = \dot{U}_{ab} \overset{*}{I}$$

 $\underline{S} = \dot{U}_{ab} \stackrel{*}{I},$ где \dot{U}_{ab} — напряжение, на которое реагирует ваттметр; $\stackrel{*}{I}$ — сопряженный ток, проходящий по его токовой обмотке.

После расчета Ѕ представляют в алгебраической форме: действительная часть комплексной мощности и есть показания ваттметра с точностью до знака. Если активная мощность получилась положительной, то необходимо отметить, что данная ветвь схемы потребляет электрическую энергию; если P < 0, то генерирует.

Показания ваттметра рассчитывают на основании определения активной мощности с использованием приведенной формулы. Начальные фазы напряжения и тока получают из комплексных выражений для этих величин (аргументы комплексных чисел). Данный пункт задания должен быть проиллюстрирован отдельной векторной диаграммой.

Пункт 10

Графический расчет токов и напряжений основывается на использовании векторной диаграммы, построенной в декартовой системе координат. При этом расчетная часть данного метода базируется на использовании законов Ома для действующих значений токов и напряжений и понятия полного сопротивления, т.е.

$$I_k = \frac{U_k}{Z_k}; Z_k = \sqrt{r_k^2 + (X_{L_k} - X_{C_k})^2}$$
.

Так как данный графический расчет применяется только для одного контура заданной схемы, то токи узлов, входящих в контур, и не являющиеся токами контура (они рассчитаны в п. 4) надо считать заданными.

Пункт 11

При построении временной диаграммы тока и напряжения для указанной ветви по оси абсцисс следует откладывать или фазовый угол ωt , или время t. На полученной диаграмме указать начальные фазы, амплитуды тока и напряжения, период полного колебания, анализируемые значения и угол сдвига фаз, а также записать законы изменения во времени этих величин.

СПИСОК ЛИТЕРАТУРЫ

- 1 Бессонов Л.А. Теоретические основы электротехники. М.: Энергоатомиздат, 1983.
- 2 Пантюшин В.С. Сборник задач по электротехнике и основам электроники. М.: Высшая школа, 1979.
 - 3 Атабеков Г.И. Теоретические основы электротехники. М.: Высшая школа, 1978.
- 4 Рекус Г.Г., Белоусов А.И. Сборник задач по электротехнике и основам электроники. М.: Высшая школа, 1991.
 - 5 Каплянский А.Е. Теоретические основы электротехники. М.: Высшая школа, 1972.
 - 6 Теоретические основы электротехники. Т. 1 / Под ред. К.М. Поливанова. М.: Энергия, 1972.
 - 7 Теоретические основы электротехники. Т. 1 / Под ред. П.А. Ионкина. М.: Высшая школа, 1976.
 - 8 Электротехника / Под ред. В.Г. Герасимова. М.: Высшая школа, 1985.
 - 9 Касаткин А.С., Немцов М.В. Электротехника. М.: Энергоатомиздат, 1983.
 - 10 Борисов Ю.М., Липатов Д.Н., Зорин Ю.Н. Электротехника. М.: Энергоатомиздат, 1985.
 - 11 Электротехника / Под ред. В.С. Пантюшина. М.: Высшая школа, 1985.
 - 12 Иванов И.И., Равдоник В.С. Электротехника. М.: Высшая школа, 1984.